Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Mar;77(3):768–773. doi: 10.1172/JCI112373

Fatty acyl chain composition in the determination of renal membrane order.

M K Hise, W W Mantulin, E J Weinman
PMCID: PMC423462  PMID: 3949976

Abstract

The relative roles of phospholipid fatty acyl chain length and phospholipid fatty acyl chain unsaturation in the determination of rat renal brush border membrane order were examined using multilamellar liposomes. Exposure of brush border membranes to sphingomyelinase resulted in a time- and concentration-dependent decrement in sphingomyelin content. Liposomes prepared from lipid extracts of these membranes were reconstituted to defined phosphatidylcholine (PC)/sphingomyelin (SPH) ratios with pure synthetic PCs of defined chain length and degrees of unsaturation. Mixed-acid PCs from bovine liver, egg, and the rat renal brush border membrane were also examined. The steady state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) at 37 degrees C was used to reflect acyl chain packing. The steady state anisotropy of DPH in liposomes isolated from the rat renal brush border membrane averaged 0.205 +/- 0.001, n = 8. When liposomes were reconstituted to PC/SPH ratios of 1.1, 1.6, and 2.4 with saturated PCs of acyl chain length 16 to 22, differences in anisotropy between groups were not observed. However, when PCs containing unsaturated or mixed-acid fatty acyl chains were introduced, anisotropy decreased in a concentration dependent fashion. These data suggest that phospholipid fatty acyl chain unsaturation, but not acyl chain length, has a powerful influence on renal brush border membrane order and the PC/SPH ratio is an important determinant of renal membrane order by virtue of the unsaturated fatty acids normally present with these phospholipids.

Full text

PDF
768

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amatruda J. M., Finch E. D. Modulation of hexose uptake and insulin action by cell membrane fluidity. The effects of temperature on membrane fluidity, insulin action, and insulin binding. J Biol Chem. 1979 Apr 25;254(8):2619–2625. [PubMed] [Google Scholar]
  2. Aronson P. S. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient the sugar transport. J Membr Biol. 1978 Jul 21;42(1):81–98. doi: 10.1007/BF01870395. [DOI] [PubMed] [Google Scholar]
  3. Bergelson L. D., Barsukov L. I. Topological asymmetry of phospholipids in membranes. Science. 1977 Jul 15;197(4300):224–230. doi: 10.1126/science.327544. [DOI] [PubMed] [Google Scholar]
  4. Blomstedt J. W., Aronson P. S. pH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles. J Clin Invest. 1980 Apr;65(4):931–934. doi: 10.1172/JCI109748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans R. W., Tinoco J. Monolayers of sterols and phosphatidylcholines containing a 20-carbon chain. Chem Phys Lipids. 1978 Oct;22(3):207–220. doi: 10.1016/0009-3084(78)90027-0. [DOI] [PubMed] [Google Scholar]
  6. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  7. Hise M. K., Mantulin W. W., Weinman E. J. Fluidity and composition of brush border and basolateral membranes from rat kidney. Am J Physiol. 1984 Sep;247(3 Pt 2):F434–F439. doi: 10.1152/ajprenal.1984.247.3.F434. [DOI] [PubMed] [Google Scholar]
  8. Ikezawa H., Mori M., Ohyabu T., Taguchi R. Studies on sphingomyelinase of Bacillus cereus. I. Purification and properties. Biochim Biophys Acta. 1978 Feb 27;528(2):247–256. [PubMed] [Google Scholar]
  9. Jähnig F. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361–6365. doi: 10.1073/pnas.76.12.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jähnig F., Vogel H., Best L. Unifying description of the effect of membrane proteins on lipid order. Verification for the melittin/dimyristoylphosphatidylcholine system. Biochemistry. 1982 Dec 21;21(26):6790–6798. doi: 10.1021/bi00269a027. [DOI] [PubMed] [Google Scholar]
  11. Kahn A. M., Branham S., Weinman E. J. Mechanism of L-malate transport in rat renal basolateral membrane vesicles. Am J Physiol. 1984 Jun;246(6 Pt 2):F779–F784. doi: 10.1152/ajprenal.1984.246.6.F779. [DOI] [PubMed] [Google Scholar]
  12. Kahn A. M., Branham S., Weinman E. J. Mechanism of urate and p-aminohippurate transport in rat renal microvillus membrane vesicles. Am J Physiol. 1983 Aug;245(2):F151–F158. doi: 10.1152/ajprenal.1983.245.2.F151. [DOI] [PubMed] [Google Scholar]
  13. Kuksis A., Breckenridge W. C., Marai L., Stachnyk O. Molecular species of lecithins of rat heart, kidney, and plasma. J Lipid Res. 1969 Jan;10(1):25–32. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Le Grimellec C., Carrière S., Cardinal J., Giocondi M. C. Fluidity of brush border and basolateral membranes from human kidney cortex. Am J Physiol. 1983 Aug;245(2):F227–F231. doi: 10.1152/ajprenal.1983.245.2.F227. [DOI] [PubMed] [Google Scholar]
  16. Le Grimellec C., Giocondi M. C., Carrière B., Carrière S., Cardinal J. Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney. Am J Physiol. 1982 Mar;242(3):F246–F253. doi: 10.1152/ajprenal.1982.242.3.F246. [DOI] [PubMed] [Google Scholar]
  17. Lentz B. R., Barenholz Y., Thompson T. E. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes. Biochemistry. 1976 Oct 5;15(20):4529–4537. doi: 10.1021/bi00665a030. [DOI] [PubMed] [Google Scholar]
  18. Lentz B. R., Hoechli M., Barenholz Y. Acyl chain order and lateral domain formation in mixed phosphatidylcholine--sphingomyelin multilamellar and unilamellar vesicles. Biochemistry. 1981 Nov 24;20(24):6803–6809. doi: 10.1021/bi00527a010. [DOI] [PubMed] [Google Scholar]
  19. Natori Y., Karasawa K., Arai H., Tamori-Natori Y., Nojima S. Partial purification and properties of phospholipase A2 from rat liver mitochondria. J Biochem. 1983 Feb;93(2):631–637. doi: 10.1093/oxfordjournals.jbchem.a134219. [DOI] [PubMed] [Google Scholar]
  20. Sacktor B., Rosenbloom I. L., Liang C. T., Cheng L. Sodium gradient- and sodium plus potassium gradient-dependent L-glutamate uptake in renal basolateral membrane vesicles. J Membr Biol. 1981 May 15;60(1):63–71. doi: 10.1007/BF01870833. [DOI] [PubMed] [Google Scholar]
  21. Sandermann H., Jr Regulation of membrane enzymes by lipids. Biochim Biophys Acta. 1978 Sep 29;515(3):209–237. doi: 10.1016/0304-4157(78)90015-1. [DOI] [PubMed] [Google Scholar]
  22. Shinitzky M., Henkart P. Fluidity of cell membranes--current concepts and trends. Int Rev Cytol. 1979;60:121–147. [PubMed] [Google Scholar]
  23. Stubbs C. D., Kouyama T., Kinosita K., Jr, Ikegami A. Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers. Biochemistry. 1981 Jul 21;20(15):4257–4262. doi: 10.1021/bi00518a004. [DOI] [PubMed] [Google Scholar]
  24. Van Blitterswijk W. J., Van Hoeven R. P., Van der Meer B. W. Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements. Biochim Biophys Acta. 1981 Jun 22;644(2):323–332. doi: 10.1016/0005-2736(81)90390-4. [DOI] [PubMed] [Google Scholar]
  25. Weglicki W. B., Waite M., Sisson P., Shohet S. B. Myocardial phospholipase A of microsomal and mitochondrial fractions. Biochim Biophys Acta. 1971 May 4;231(3):512–519. doi: 10.1016/0005-2760(71)90119-6. [DOI] [PubMed] [Google Scholar]
  26. van Golde L. M., van Deenen L. L. The effect of dietary fat on the molecular species of lecithin from rat liver. Biochim Biophys Acta. 1966 Dec 7;125(3):496–509. doi: 10.1016/0005-2760(66)90038-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES