Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Mar;77(3):774–781. doi: 10.1172/JCI112374

Calcium dependency and free calcium concentrations during insulin secretion in a hamster beta cell line.

A E Boyd 3rd, R S Hill, J M Oberwetter, M Berg
PMCID: PMC423463  PMID: 3081574

Abstract

Using a glucose-responsive beta cell line, we tested the hypothesis that the free cytosolic Ca2+ concentration ([Ca2+]i) is the primary signal that couples a stimulus to insulin secretion, and examined the involvement of the extracellular Ca2+ pool in this process. Glucose or depolarization of the beta cell with 40 mM K+ stimulated a monophasic release of insulin directly proportional to the extracellular Ca2+ concentration. 40 mM K+ increased 45Ca2+ uptake and increased [Ca2+]i, which was measured with quin 2, 4.7-fold, from 56 +/- 3 to 238 +/- 17 nM. With high glucose, 45Ca2+ uptake did not increase, and [Ca2+]i was unchanged or fell slightly. There was a striking correlation between inhibitory effects of verapamil, the Ca2+ channel blocker, on insulin secretion and the rise in [Ca2+]i evoked by K+. Higher concentrations of verapamil were required to inhibit glucose- than K+-stimulated insulin secretion (dose giving half-maximal effect of 1.4 X 10(-4) M vs. 6.0 X 10(-7) M). Incubation in Ca2+-free, 1 mM EGTA buffer for 30 min lowered [Ca2+]i to 14 +/- 2 nM, and inhibited acute insulin release to both secretagogues. If high glucose was present in the Ca2+-free period, reintroduction of 2.5 mM Ca2+ in high glucose restored insulin secretion only to the basal rate. However, if low glucose was present during the Ca2+-free period, high glucose and 2.5 mM Ca2+ triggered a full first-phase insulin response. These data suggest that high glucose generates a non-Ca2+ signal that turns over rapidly and provide direct evidence that K+ triggers insulin release by drawing extracellular Ca2+ into the beta cell through verapamil-sensitive Ca2+ channels. However, an increase [Ca2+]i is not the primary signal that evokes glucose-stimulated insulin release in this beta cell line.

Full text

PDF
774

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert P. R., Tashjian A. H., Jr Relationship of thyrotropin-releasing hormone-induced spike and plateau phases in cytosolic free Ca2+ concentrations to hormone secretion. Selective blockade using ionomycin and nifedipine. J Biol Chem. 1984 Dec 25;259(24):15350–15363. [PubMed] [Google Scholar]
  2. Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
  3. Boyd A. E., 3rd, Bolton W. E., Brinkley B. R. Microtubules and beta cell function: effect of colchicine on microtubules and insulin secretion in vitro by mouse beta cells. J Cell Biol. 1982 Feb;92(2):425–434. doi: 10.1083/jcb.92.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
  5. Cook D. L., Ikeuchi M., Fujimoto W. Y. Lowering of pHi inhibits Ca2+-activated K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):269–271. doi: 10.1038/311269a0. [DOI] [PubMed] [Google Scholar]
  6. Curry D. L., Bennett L. L., Grodsky G. M. Requirement for calcium ion in insulin secretion by the perfused rat pancreas. Am J Physiol. 1968 Jan;214(1):174–178. doi: 10.1152/ajplegacy.1968.214.1.174. [DOI] [PubMed] [Google Scholar]
  7. Dean P. M., Matthews E. K. Electrical activity in pancreatic islet cells. Nature. 1968 Jul 27;219(5152):389–390. doi: 10.1038/219389a0. [DOI] [PubMed] [Google Scholar]
  8. Frankel B. J., Atwater I., Grodsky G. M. Calcium affects insulin release and membrane potential in islet beta-cells. Am J Physiol. 1981 Jan;240(1):C64–C72. doi: 10.1152/ajpcell.1981.240.1.C64. [DOI] [PubMed] [Google Scholar]
  9. Grodsky G. M., Bennett L. L. Cation requirements for insulin secretion in the isolated perfused pancreas. Diabetes. 1966 Dec;15(12):910–913. doi: 10.2337/diab.15.12.910. [DOI] [PubMed] [Google Scholar]
  10. HALES C. N., RANDLE P. J. Immunoassay of insulin with insulin-antibody precipitate. Biochem J. 1963 Jul;88:137–146. doi: 10.1042/bj0880137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hill R. S., Boyd A. E., 3rd Perifusion of a clonal cell line of Simian virus 40-transformed beta cells. Insulin secretory dynamics in response to glucose, 3-isobutyl-1-methylxanthine, and potassium. Diabetes. 1985 Feb;34(2):115–120. doi: 10.2337/diab.34.2.115. [DOI] [PubMed] [Google Scholar]
  12. Johnson P. C., Ware J. A., Cliveden P. B., Smith M., Dvorak A. M., Salzman E. W. Measurement of ionized calcium in blood platelets with the photoprotein aequorin. Comparison with Quin 2. J Biol Chem. 1985 Feb 25;260(4):2069–2076. [PubMed] [Google Scholar]
  13. Kikuchi M., Wollheim C. B., Cuendet G. S., Renold A. E., Sharp G. W. Studies on the dual effects of glucose on 45Ca++ efflux from isolated rat islets. Endocrinology. 1978 May;102(5):1339–1349. doi: 10.1210/endo-102-5-1339. [DOI] [PubMed] [Google Scholar]
  14. Kikuchi M., Wollheim C. B., Siegel E. G., Renold A. E., Sharp G. W. Biphasic insulin release in rat islets of Langerhans and the role of Intracellular Ca++ stores. Endocrinology. 1979 Oct;105(4):1013–1019. doi: 10.1210/endo-105-4-1013. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lenzen S., Klöppel G. Intracellular localization of calcium in pancreatic B-cells in relation to insulin secretion by the perfused ob/ob mouse pancreas. Endocrinology. 1984 Mar;114(3):1012–1020. doi: 10.1210/endo-114-3-1012. [DOI] [PubMed] [Google Scholar]
  17. Malaisse-Lagae F., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. 3. Uptake of 45 calcium by isolated islets of Langerhans. Endocrinology. 1971 Jan;88(1):72–80. doi: 10.1210/endo-88-1-72. [DOI] [PubMed] [Google Scholar]
  18. Malaisse W. J., Hutton J. C., Sener A., Levy J., Herchuelz A., Devis G., Somers G. Calcium antagonists and islet function: VII. Effect of calcium deprivation. J Membr Biol. 1978 Jan 18;38(3):193–208. doi: 10.1007/BF01871922. [DOI] [PubMed] [Google Scholar]
  19. Malaisse W. J., Malaisse-Lagae F., Sener A. Coupling factors in nutrient-induced insulin release. Experientia. 1984 Oct 15;40(10):1035–1043. doi: 10.1007/BF01971449. [DOI] [PubMed] [Google Scholar]
  20. Masiello P., Wollheim C. B., Janjic D., Gjinovci A., Blondel B., Praz G. A., Renold A. E. Stimulation of insulin release by glucose in a transplantable rat islet cell tumor. Endocrinology. 1982 Dec;111(6):2091–2096. doi: 10.1210/endo-111-6-2091. [DOI] [PubMed] [Google Scholar]
  21. Matthews E. K., Sakamoto Y. Electrical characteristics of pancreatic islet cells. J Physiol. 1975 Mar;246(2):421–437. doi: 10.1113/jphysiol.1975.sp010897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nayler W. G., Szeto J. Effect of verapamil on contractility, oxygen utilization, and calcium exchangeability in mammalian heart muscle. Cardiovasc Res. 1972 Mar;6(2):120–128. doi: 10.1093/cvr/6.2.120. [DOI] [PubMed] [Google Scholar]
  23. Nelson T. Y., Oberwetter J. M., Chafouleas J. G., Boyd A. E., 3rd Calmodulin-binding proteins in a cloned rat insulinoma cell line. Diabetes. 1983 Dec;32(12):1126–1133. doi: 10.2337/diab.32.12.1126. [DOI] [PubMed] [Google Scholar]
  24. Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science. 1984 Sep 21;225(4668):1365–1370. doi: 10.1126/science.6147898. [DOI] [PubMed] [Google Scholar]
  25. Praz G. A., Halban P. A., Wollheim C. B., Blondel B., Strauss A. J., Renold A. E. Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem J. 1983 Feb 15;210(2):345–352. doi: 10.1042/bj2100345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Prentki M., Wollheim C. B. Cytosolic free Ca2+ in insulin secreting cells and its regulation by isolated organelles. Experientia. 1984 Oct 15;40(10):1052–1060. doi: 10.1007/BF01971451. [DOI] [PubMed] [Google Scholar]
  27. Rorsman P., Abrahamsson H., Gylfe E., Hellman B. Dual effects of glucose on the cytosolic Ca2+ activity of mouse pancreatic beta-cells. FEBS Lett. 1984 May 7;170(1):196–200. doi: 10.1016/0014-5793(84)81398-8. [DOI] [PubMed] [Google Scholar]
  28. Rorsman P., Berggren P. O., Gylfe E., Hellman B. Reduction of the cytosolic calcium activity in clonal insulin-releasing cells exposed to glucose. Biosci Rep. 1983 Oct;3(10):939–946. doi: 10.1007/BF01140663. [DOI] [PubMed] [Google Scholar]
  29. Santerre R. F., Cook R. A., Crisel R. M., Sharp J. D., Schmidt R. J., Williams D. C., Wilson C. P. Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4339–4343. doi: 10.1073/pnas.78.7.4339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Siegel E. G., Wollheim C. B., Sharp G. W. Glucose-induced first phase insulin release in the absence of extracellular Ca2+ in rat islets. FEBS Lett. 1980 Jan 14;109(2):213–215. doi: 10.1016/0014-5793(80)81089-1. [DOI] [PubMed] [Google Scholar]
  31. Sugden M. C., Christie M. R., Ashcroft S. J. Presence and possible role of calcium-dependent regulator (calmodulin) in rat islets of Langerhans. FEBS Lett. 1979 Sep 1;105(1):95–100. doi: 10.1016/0014-5793(79)80894-7. [DOI] [PubMed] [Google Scholar]
  32. Tan K. N., Tashjian A. H., Jr Voltage-dependent calcium channels in pituitary cells in culture. I. Characterization by 45Ca2+ fluxes. J Biol Chem. 1984 Jan 10;259(1):418–426. [PubMed] [Google Scholar]
  33. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Valverde I., Vandermeers A., Anjaneyulu R., Malaisse W. J. Calmodulin activation of adenylate cyclase in pancreatic islets. Science. 1979 Oct 12;206(4415):225–227. doi: 10.1126/science.225798. [DOI] [PubMed] [Google Scholar]
  35. Wollheim C. B., Janjic D. Cobalt inhibition of insulin release: evidence for an action not related to Ca2+ uptake. Am J Physiol. 1984 Jan;246(1 Pt 1):C57–C62. doi: 10.1152/ajpcell.1984.246.1.C57. [DOI] [PubMed] [Google Scholar]
  36. Wollheim C. B., Kikuchi M., Renold A. E., Sharp G. W. The roles of intracellular and extracellular Ca++ in glucose-stimulated biphasic insulin release by rat islets. J Clin Invest. 1978 Aug;62(2):451–458. doi: 10.1172/JCI109146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wollheim C. B., Pozzan T. Correlation between cytosolic free Ca2+ and insulin release in an insulin-secreting cell line. J Biol Chem. 1984 Feb 25;259(4):2262–2267. [PubMed] [Google Scholar]
  38. Wollheim C. B., Sharp G. W. Regulation of insulin release by calcium. Physiol Rev. 1981 Oct;61(4):914–973. doi: 10.1152/physrev.1981.61.4.914. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES