Abstract
Our previous studies had suggested a link between bile salt stimulation of colonic epithelial proliferation and the release and oxygenation of arachidonate via the lipoxygenase pathway. In the present study, we examined the role of reactive oxygen versus end products of arachidonate metabolism via the cyclooxygenase and lipoxygenase pathways in bile salt stimulation of rat colonic epithelial proliferation. Intracolonic instillation of 5 mM deoxycholate increased mucosal ornithine decarboxylase activity and [3H]thymidine incorporation into DNA. Responses to deoxycholate were abolished by the superoxide dismutase mimetic CuII (3,5 diisopropylsalicylic acid)2 (CuDIPS), and by phenidone or esculetin, which inhibit both lipoxygenase and cyclooxygenase activities. By contrast, indomethacin potentiated the response. Phenidone and esculetin suppressed deoxycholate-induced increases in prostaglandin E2 (PGE2), leukotriene B4 (LTB4), and 5, 12, and 15-hydroxyeicosatetraenoic acid (HETE), whereas CuDIPS had no effect. Indomethacin suppressed only PGE2. Deoxycholate (0.5-5 mM) increased superoxide dismutase sensitive chemiluminescence 2-10-fold and stimulated superoxide production as measured by cytochrome c reduction in colonic mucosal scrapings or crypt epithelium. Bile salt-induced increases in chemiluminescence were abolished by CuDIPS, phenidone, and esculetin, but not by indomethacin. Intracolonic generation of reactive oxygen by xanthine-xanthine oxidase increased colonic mucosal ornithine decarboxylase activity and [3H]thymidine incorporation into DNA approximately twofold. These effects were abolished by superoxide dismutase. The findings support a key role for reactive oxygen, rather than more distal products of either the lipoxygenase or cyclooxygenase pathways, in the stimulation of colonic mucosal proliferation by bile salts.
Full text
PDF![850](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a509/423471/986b53ddba2e/jcinvest00106-0204.png)
![851](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a509/423471/3bfa83f4ddcd/jcinvest00106-0205.png)
![852](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a509/423471/0952745e9ee7/jcinvest00106-0206.png)
![853](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a509/423471/c84f5c438b60/jcinvest00106-0207.png)
![854](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a509/423471/45e0bfed3ce5/jcinvest00106-0208.png)
![855](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a509/423471/412f0ecf57ff/jcinvest00106-0209.png)
![856](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a509/423471/71343f2fcd53/jcinvest00106-0210.png)
![857](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a509/423471/1bb56b626b04/jcinvest00106-0211.png)
![858](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a509/423471/32e930d1e32b/jcinvest00106-0212.png)
![859](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a509/423471/ba6660854c82/jcinvest00106-0213.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Badwey J. A., Curnutte J. T., Karnovsky M. L. cis-Polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils. J Biol Chem. 1981 Dec 25;256(24):12640–12643. [PubMed] [Google Scholar]
- Badwey J. A., Curnutte J. T., Robinson J. M., Berde C. B., Karnovsky M. J., Karnovsky M. L. Effects of free fatty acids on release of superoxide and on change of shape by human neutrophils. Reversibility by albumin. J Biol Chem. 1984 Jun 25;259(12):7870–7877. [PubMed] [Google Scholar]
- Bjerknes M., Cheng H. Methods for the isolation of intact epithelium from the mouse intestine. Anat Rec. 1981 Apr;199(4):565–574. doi: 10.1002/ar.1091990412. [DOI] [PubMed] [Google Scholar]
- Blackwell G. J., Flower R. J. 1-phenyl-3-pyrazolidone: an inhibitor of cyclo-oxygenase and lipoxygenase pathways in lung and platelets. Prostaglandins. 1978 Sep;16(3):417–425. doi: 10.1016/0090-6980(78)90220-4. [DOI] [PubMed] [Google Scholar]
- Bromberg Y., Pick E. Unsaturated fatty acids as second messengers of superoxide generation by macrophages. Cell Immunol. 1983 Jul 15;79(2):240–252. doi: 10.1016/0008-8749(83)90067-9. [DOI] [PubMed] [Google Scholar]
- Bull A. W., Nigro N. D., Golembieski W. A., Crissman J. D., Marnett L. J. In vivo stimulation of DNA synthesis and induction of ornithine decarboxylase in rat colon by fatty acid hydroperoxides, autoxidation products of unsaturated fatty acids. Cancer Res. 1984 Nov;44(11):4924–4928. [PubMed] [Google Scholar]
- Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
- Clifford D. P., Repine J. E. Measurement of oxidizing radicals by polymorphonuclear leukocytes. Methods Enzymol. 1984;105:393–398. doi: 10.1016/s0076-6879(84)05054-0. [DOI] [PubMed] [Google Scholar]
- Craven P. A., Saito R., DeRubertis F. R. Role of local prostaglandin synthesis in the modulation of proliferative activity of rat colonic epithelium. J Clin Invest. 1983 Oct;72(4):1365–1375. doi: 10.1172/JCI111093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curnutte J. T., Badwey J. A., Robinson J. M., Karnovsky M. J., Karnovsky M. L. Studies on the mechanism of superoxide release from human neutrophils stimulated with arachidonate. J Biol Chem. 1984 Oct 10;259(19):11851–11857. [PubMed] [Google Scholar]
- DeRubertis F. R., Craven P. A., Saito R. 16,16-Dimethyl prostaglandin E2 suppresses the increases in the proliferative activity of rat colonic epithelium induced by indomethacin and aspirin. Gastroenterology. 1985 Nov;89(5):1054–1063. doi: 10.1016/0016-5085(85)90209-4. [DOI] [PubMed] [Google Scholar]
- DeRubertis F. R., Craven P. A., Saito R. Bile salt stimulation of colonic epithelial proliferation. Evidence for involvement of lipoxygenase products. J Clin Invest. 1984 Nov;74(5):1614–1624. doi: 10.1172/JCI111577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang W. F., Strobel H. W. The drug and carcinogen metabolism system of rat colon microsomes. Arch Biochem Biophys. 1978 Feb;186(1):128–138. doi: 10.1016/0003-9861(78)90472-1. [DOI] [PubMed] [Google Scholar]
- Fischer S. M., Adams L. M. Suppression of tumor promoter-induced chemiluminescence in mouse epidermal cells by several inhibitors of arachidonic acid metabolism. Cancer Res. 1985 Jul;45(7):3130–3136. [PubMed] [Google Scholar]
- Flower R. J. Drugs which inhibit prostaglandin biosynthesis. Pharmacol Rev. 1974 Mar;26(1):33–67. [PubMed] [Google Scholar]
- Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975;44:147–159. doi: 10.1146/annurev.bi.44.070175.001051. [DOI] [PubMed] [Google Scholar]
- HENRY R. J., SOBEL C., KIM J. A modified carbonate-phosphotungstate method for the determination of uric acid and comparison with the spectrophotometric uricase method. Am J Clin Pathol. 1957 Aug;28(2):152–160. doi: 10.1093/ajcp/28.2.152. [DOI] [PubMed] [Google Scholar]
- Hille R., Massey V. Tight binding inhibitors of xanthine oxidase. Pharmacol Ther. 1981;14(2):249–263. doi: 10.1016/0163-7258(81)90063-2. [DOI] [PubMed] [Google Scholar]
- Ingraham L. M., Weening R. S., Clarke M. F., Boxer L. A., Baehner R. L. Relation of respiratory burst and arachidonate metabolism during phagocytosis by guinea pig alveolar macrophages. J Lab Clin Med. 1982 Jun;99(6):908–916. [PubMed] [Google Scholar]
- Kakinuma K., Minakami S. Effects of fatty acids on superoxide radical generation in leukocytes. Biochim Biophys Acta. 1978 Jan 3;538(1):50–59. doi: 10.1016/0304-4165(78)90251-9. [DOI] [PubMed] [Google Scholar]
- Kensler T. W., Bush D. M., Kozumbo W. J. Inhibition of tumor promotion by a biomimetic superoxide dismutase. Science. 1983 Jul 1;221(4605):75–77. doi: 10.1126/science.6857269. [DOI] [PubMed] [Google Scholar]
- Kensler T. W., Trush M. A. Inhibiton of phorbol ester-stimulated chemiluminescence in human polymorphonuclear leukocytes by retinoic acid and 5,6-epoxyretinoic acid. Cancer Res. 1981 Jan;41(1):216–222. [PubMed] [Google Scholar]
- Ligumsky M., Karmeli F., Sharon P., Zor U., Cohen F., Rachmilewitz D. Enhanced thromboxane A2 and prostacyclin production by cultured rectal mucosa in ulcerative colitis and its inhibition by steroids and sulfasalazine. Gastroenterology. 1981 Sep;81(3):444–449. [PubMed] [Google Scholar]
- Lilius E. M., Laakso S. A sensitive lipoxygenase assay based on chemiluminescence. Anal Biochem. 1982 Jan 1;119(1):135–141. doi: 10.1016/0003-2697(82)90676-5. [DOI] [PubMed] [Google Scholar]
- Maas R. L., Turk J., Oates J. A., Brash A. R. Formation of a novel dihydroxy acid from arachidonic acid by lipoxygenase-catalyzed double oxygenation in rat mononuclear cells and human leukocytes. J Biol Chem. 1982 Jun 25;257(12):7056–7067. [PubMed] [Google Scholar]
- Marnett L. J., Siedlik P. H., Fung L. W. Oxidation of phenidone and BW755C by prostaglandin endoperoxide synthetase. J Biol Chem. 1982 Jun 25;257(12):6957–6964. [PubMed] [Google Scholar]
- Marnett L. J., Wlodawer P., Samuelsson B. Co-oxygenation of organic substrates by the prostaglandin synthetase of sheep vesicular gland. J Biol Chem. 1975 Nov 10;250(21):8510–8517. [PubMed] [Google Scholar]
- Marnett L. J., Wlodawer P., Samuelsson B. Light emission during the action of prostaglandin synthetase. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1286–1294. doi: 10.1016/0006-291x(74)90337-4. [DOI] [PubMed] [Google Scholar]
- Matsushima M., Bryan G. T. Early induction of mouse urinary bladder ornithine decarboxylase activity by rodent vesical carcinogens. Cancer Res. 1980 Jun;40(6):1897–1901. [PubMed] [Google Scholar]
- McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
- McPhail L. C., Clayton C. C., Snyderman R. A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science. 1984 May 11;224(4649):622–625. doi: 10.1126/science.6231726. [DOI] [PubMed] [Google Scholar]
- Moody C. S., Hassan H. M. Mutagenicity of oxygen free radicals. Proc Natl Acad Sci U S A. 1982 May;79(9):2855–2859. doi: 10.1073/pnas.79.9.2855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neufeld E. J., Majerus P. W. Arachidonate release and phosphatidic acid turnover in stimulated human platelets. J Biol Chem. 1983 Feb 25;258(4):2461–2467. [PubMed] [Google Scholar]
- Sanger F. The free amino groups of insulin. Biochem J. 1945;39(5):507–515. doi: 10.1042/bj0390507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sekiya K., Okuda H., Arichi S. Selective inhibition of platelet lipoxygenase by esculetin. Biochim Biophys Acta. 1982 Oct 14;713(1):68–72. [PubMed] [Google Scholar]
- Sharon P., Stenson W. F. Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology. 1984 Mar;86(3):453–460. [PubMed] [Google Scholar]
- Slater T. F. Free-radical mechanisms in tissue injury. Biochem J. 1984 Aug 15;222(1):1–15. doi: 10.1042/bj2220001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith R. L., Weidemann M. J. Reactive oxygen production associated with arachidonic acid metabolism by peritoneal macrophages. Biochem Biophys Res Commun. 1980 Dec 16;97(3):973–980. doi: 10.1016/0006-291x(80)91472-2. [DOI] [PubMed] [Google Scholar]
- Sorenson J. R. Copper chelates as possible active forms of the antiarthritic agents. J Med Chem. 1976 Jan;19(1):135–148. doi: 10.1021/jm00223a024. [DOI] [PubMed] [Google Scholar]
- Takano S., Matsushima M., Ertürk E., Bryan G. T. Early induction of rat colonic epithelial ornithine and S-adenosyl-L-methionine decarboxylase activities by N-methyl-N'-nitro-N-nitrosoguanidine or bile salts. Cancer Res. 1981 Feb;41(2):624–628. [PubMed] [Google Scholar]
- Weitzman S. A., Weitberg A. B., Clark E. P., Stossel T. P. Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science. 1985 Mar 8;227(4691):1231–1233. doi: 10.1126/science.3975611. [DOI] [PubMed] [Google Scholar]
- Yoshimoto S., Yoshimoto T., Tsubura E. Arachidonic acid-induced chemiluminescence of human polymorphonuclear leukocytes. Biochem Biophys Res Commun. 1982 Aug;107(3):779–784. doi: 10.1016/0006-291x(82)90591-5. [DOI] [PubMed] [Google Scholar]
- deAlvare L. R., Goda K., Kimura T. Mechanism of superoxide anion scavenging reaction by bis-(salicylato)-copper (II) complex. Biochem Biophys Res Commun. 1976 Apr 5;69(3):687–694. doi: 10.1016/0006-291x(76)90930-x. [DOI] [PubMed] [Google Scholar]