Abstract
Serum bone gamma-carboxyglutamic acid-containing (Gla) protein (sBGP), a sensitive and specific marker of bone turnover, was measured in 25 patients with primary hyperparathyroidism and in 24 patients with bone metastases with or without hypercalcemia. Despite similar levels of hypercalcemia, sBGP was increased in primary hyperparathyroidism (14.2 +/- 9.6 ng/ml, P less than 0.001), was decreased in malignant hypercalcemia (3.1 +/- 2.8 ng/ml, P less than 0.001), and was normal in patients with bone metastases without hypercalcemia (6.6 +/- 2.7 ng/ml). In primary hyperparathyroidism, sBGP was correlated with serum immuno-reactive parathyroid hormone (r = 0.90), calcium (r = 0.73), and with the adenoma weight (r = 0.79). After parathyroidectomy, sBGP slowly returned to normal values within 2-6 mo, suggesting that sBGP reflects increased bone turnover rather than a direct effect of parathyroid hormone on BGP synthesis at the cell level. An iliac crest biopsy was performed in 11 patients with primary hyperparathyroidism and in 9 cancer patients in a noninvaded area. sBGP was significantly correlated with all parameters reflecting bone formation but not with bone resorption. Patients with bone metastases were analyzed according to the presence or the absence of hypercalcemia. In contrast to normocalcemic patients who had normal sBGP, hypercalcemic patients had decreased sBGP (P less than 0.001) and a lower bone formation at the cellular level (P less than 0.05). Thus, biochemical and histological data suggest that an unknown humoral factor might be responsible for this uncoupling between increased resorption and decreased formation. This uncoupling, rather than local release of calcium by the metastatic process, might be responsible for hypercalcemia in patients with bone metastases.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Besarab A., Caro J. F. Mechanisms of hypercalcemia in malignancy. Cancer. 1978 Jun;41(6):2276–2285. doi: 10.1002/1097-0142(197806)41:6<2276::aid-cncr2820410628>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
- Brown J. P., Delmas P. D., Malaval L., Edouard C., Chapuy M. C., Meunier P. J. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet. 1984 May 19;1(8386):1091–1093. doi: 10.1016/s0140-6736(84)92506-6. [DOI] [PubMed] [Google Scholar]
- Byers P. D., Smith R. Quantitative histology of bone in hyperparathyroidism. Its relation to clinical features, x-ray, and biochemistry. Q J Med. 1971 Oct;40(160):471–486. [PubMed] [Google Scholar]
- Charhon S. A., Edouard C. M., Arlot M. E., Meunier P. J. Effects of parathyroid hormone on remodeling of iliac trabecular bone packets in patients with primary hyperparathyroidism. Clin Orthop Relat Res. 1982 Jan-Feb;(162):255–263. [PubMed] [Google Scholar]
- Deftos L. J., Parthemore J. G., Price P. A. Changes in plasma bone GLA protein during treatment of bone disease. Calcif Tissue Int. 1982 Mar;34(2):121–124. doi: 10.1007/BF02411221. [DOI] [PubMed] [Google Scholar]
- Delmas P. D., Stenner D., Wahner H. W., Mann K. G., Riggs B. L. Increase in serum bone gamma-carboxyglutamic acid protein with aging in women. Implications for the mechanism of age-related bone loss. J Clin Invest. 1983 May;71(5):1316–1321. doi: 10.1172/JCI110882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmas P. D., Wahner H. W., Mann K. G., Riggs B. L. Assessment of bone turnover in postmenopausal osteoporosis by measurement of serum bone Gla-protein. J Lab Clin Med. 1983 Oct;102(4):470–476. [PubMed] [Google Scholar]
- Delmas P. D., Wilson D. M., Mann K. G., Riggs B. L. Effect of renal function on plasma levels of bone Gla-protein. J Clin Endocrinol Metab. 1983 Nov;57(5):1028–1030. doi: 10.1210/jcem-57-5-1028. [DOI] [PubMed] [Google Scholar]
- Gundberg C. M., Lian J. B., Gallop P. M., Steinberg J. J. Urinary gamma-carboxyglutamic acid and serum osteocalcin as bone markers: studies in osteoporosis and Paget's disease. J Clin Endocrinol Metab. 1983 Dec;57(6):1221–1225. doi: 10.1210/jcem-57-6-1221. [DOI] [PubMed] [Google Scholar]
- Hauschka P. V., Lian J. B., Gallop P. M. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3925–3929. doi: 10.1073/pnas.72.10.3925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath H., 3rd, Hodgson S. F., Kennedy M. A. Primary hyperparathyroidism. Incidence, morbidity, and potential economic impact in a community. N Engl J Med. 1980 Jan 24;302(4):189–193. doi: 10.1056/NEJM198001243020402. [DOI] [PubMed] [Google Scholar]
- Kivirikko K. I., Laitinen O., Prockop D. J. Modifications of a specific assay for hydroxyproline in urine. Anal Biochem. 1967 May;19(2):249–255. doi: 10.1016/0003-2697(67)90160-1. [DOI] [PubMed] [Google Scholar]
- Kragstrup J., Melsen F., Mosekilde L. Thickness of lamellae in normal human iliac trabecular bone. Metab Bone Dis Relat Res. 1983;4(5):291–295. doi: 10.1016/s0221-8747(83)80002-2. [DOI] [PubMed] [Google Scholar]
- Malluche H. H., Faugere M. C., Fanti P., Price P. A. Plasma levels of bone Gla-protein reflect bone formation in patients on chronic maintenance dialysis. Kidney Int. 1984 Dec;26(6):869–874. doi: 10.1038/ki.1984.230. [DOI] [PubMed] [Google Scholar]
- McDonnell G. D., Dunstan C. R., Evans R. A., Carter J. N., Hills E., Wong S. Y., McNeil D. R. Quantitative bone histology in the hypercalcemia of malignant disease. J Clin Endocrinol Metab. 1982 Dec;55(6):1066–1072. doi: 10.1210/jcem-55-6-1066. [DOI] [PubMed] [Google Scholar]
- Meunier P. J., Coindre J. M., Edouard C. M., Arlot M. E. Bone histomorphometry in Paget's disease. Quantitative and dynamic analysis of pagetic and nonpagetic bone tissue. Arthritis Rheum. 1980 Oct;23(10):1095–1103. doi: 10.1002/art.1780231005. [DOI] [PubMed] [Google Scholar]
- Meunier P., Courpron P., Edouard C., Bernard J., Bringuier J., Vignon G. Physiological senile involution and pathological rarefaction of bone. Quantitative and comparative histological data. Clin Endocrinol Metab. 1973 Jul;2(2):239–256. doi: 10.1016/s0300-595x(73)80042-8. [DOI] [PubMed] [Google Scholar]
- Mosekilde L., Melsen F. A tetracycline-based histomorphometric evaluation of bone resorption and bone turnover in hyperthyroidism and hyperparathyroidism. Acta Med Scand. 1978;204(1-2):97–102. doi: 10.1111/j.0954-6820.1978.tb08406.x. [DOI] [PubMed] [Google Scholar]
- Mundy G. R., Cove D. H., Fisken R. Primary hyperparathyroidism: changes in the pattern of clinical presentation. Lancet. 1980 Jun 21;1(8182):1317–1320. doi: 10.1016/s0140-6736(80)91783-3. [DOI] [PubMed] [Google Scholar]
- Mundy G. R., Ibbotson K. J., D'Souza S. M., Simpson E. L., Jacobs J. W., Martin T. J. The hypercalcemia of cancer. Clinical implications and pathogenic mechanisms. N Engl J Med. 1984 Jun 28;310(26):1718–1727. doi: 10.1056/NEJM198406283102607. [DOI] [PubMed] [Google Scholar]
- Nishimoto S. K., Price P. A. Secretion of the vitamin K-dependent protein of bone by rat osteosarcoma cells. Evidence for an intracellular precursor. J Biol Chem. 1980 Jul 25;255(14):6579–6583. [PubMed] [Google Scholar]
- Parfitt A. M. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part III of IV parts; PTH and osteoblasts, the relationship between bone turnover and bone loss, and the state of the bones in primary hyperparathyroidism. Metabolism. 1976 Sep;25(9):1033–1069. doi: 10.1016/0026-0495(76)90133-5. [DOI] [PubMed] [Google Scholar]
- Payne R. B., Little A. J., Williams R. B., Milner J. R. Interpretation of serum calcium in patients with abnormal serum proteins. Br Med J. 1973 Dec 15;4(5893):643–646. doi: 10.1136/bmj.4.5893.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price P. A., Nishimoto S. K. Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2234–2238. doi: 10.1073/pnas.77.4.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price P. A., Otsuka A. A., Poser J. W., Kristaponis J., Raman N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci U S A. 1976 May;73(5):1447–1451. doi: 10.1073/pnas.73.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price P. A., Parthemore J. G., Deftos L. J. New biochemical marker for bone metabolism. Measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J Clin Invest. 1980 Nov;66(5):878–883. doi: 10.1172/JCI109954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price P. A., Williamson M. K., Lothringer J. W. Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J Biol Chem. 1981 Dec 25;256(24):12760–12766. [PubMed] [Google Scholar]
- RIGGS B. L., KELLY P. J., JOWSEY J., KEATING F. R., Jr SKELETAL ALTERATIONS IN HYPERPARATHYROIDISM: DETERMINATION OF BONE FORMATION, RESORPTION AND MORPHOLOGIC CHANGES BY MICRORADIOGRAPHY. J Clin Endocrinol Metab. 1965 Jun;25:777–783. doi: 10.1210/jcem-25-6-777. [DOI] [PubMed] [Google Scholar]
- Ralston S. H., Fogelman I., Gardiner M. D., Boyle I. T. Relative contribution of humoral and metastatic factors to the pathogenesis of hypercalcaemia in malignancy. Br Med J (Clin Res Ed) 1984 May 12;288(6428):1405–1408. doi: 10.1136/bmj.288.6428.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp C. F., Jr, Rude R. K., Terry R., Singer F. R. Abnormal bone and parathyroid histology in carcinoma patients with pseudohyperparathyroidism. Cancer. 1982 Apr 1;49(7):1449–1455. doi: 10.1002/1097-0142(19820401)49:7<1449::aid-cncr2820490723>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
- Slovik D. M., Gundberg C. M., Neer R. M., Lian J. B. Clinical evaluation of bone turnover by serum osteocalcin measurements in a hospital setting. J Clin Endocrinol Metab. 1984 Aug;59(2):228–230. doi: 10.1210/jcem-59-2-228. [DOI] [PubMed] [Google Scholar]
- Stewart A. F., Horst R., Deftos L. J., Cadman E. C., Lang R., Broadus A. E. Biochemical evaluation of patients with cancer-associated hypercalcemia: evidence for humoral and nonhumoral groups. N Engl J Med. 1980 Dec 11;303(24):1377–1383. doi: 10.1056/NEJM198012113032401. [DOI] [PubMed] [Google Scholar]
- Stewart A. F., Vignery A., Silverglate A., Ravin N. D., LiVolsi V., Broadus A. E., Baron R. Quantitative bone histomorphometry in humoral hypercalcemia of malignancy: uncoupling of bone cell activity. J Clin Endocrinol Metab. 1982 Aug;55(2):219–227. doi: 10.1210/jcem-55-2-219. [DOI] [PubMed] [Google Scholar]