Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Feb;75(2):462–471. doi: 10.1172/JCI111721

Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl- cotransport system.

K Dharmsathaphorn, K G Mandel, H Masui, J A McRoberts
PMCID: PMC423520  PMID: 2579099

Abstract

We have used a well-differentiated human colonic cell line, the T84 cell line, as a model system to study the pathways of cellular ion transport involved in vasoactive intestinal polypeptide (VIP)-induced chloride secretion. A modified Ussing chamber was used to study transepithelial Na+ and Cl- fluxes across confluent monolayer cultures of the T84 cells grown on permeable supports. In a manner analogous to isolated intestine, the addition of VIP caused an increase of net Cl- secretion which accounted for the increase in short circuit current (Isc). The effect of VIP on Isc was dose dependent with a threshold stimulation at 10(-10) M VIP, and a maximal effect at 10(-8) M. Bumetanide prevented or reversed the response to VIP. Inhibition by bumetanide occurred promptly when it was added to the serosal, but not to the mucosal bathing media. Ion replacement studies demonstrated that the response to VIP required the simultaneous presence of Na+, K+, and Cl- in the serosal media. Utilizing cellular ion uptake techniques, we describe an interdependence of bumetanide-sensitive 22Na+, 86Rb+, and 36Cl- uptake, which is indicative of a Na+,K+,Cl- cotransport system in this cell line. This transport pathway was localized to the basolateral membrane. Extrapolated initial velocities of uptake for each of the three ions was consistent with the electroneutral cotransport of 1 Na+:1 K+ (Rb+):2 Cl-. Our findings indicate that VIP-induced Cl- secretion intimately involves a bumetanide-sensitive Na+,K+,Cl- cotransport system which is functionally localized to the basolateral membrane.

Full text

PDF
462

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakker-Grunwald T. Hormone-induced diuretic-sensitive potassium transport in turkey erythrocytes is anion dependent. Biochim Biophys Acta. 1981 Mar 6;641(2):427–431. doi: 10.1016/0005-2736(81)90500-9. [DOI] [PubMed] [Google Scholar]
  2. Bakker R., Groot J. A. cAMP-mediated effects of ouabain and theophylline on paracellular ion selectivity. Am J Physiol. 1984 Feb;246(2 Pt 1):G213–G217. doi: 10.1152/ajpgi.1984.246.2.G213. [DOI] [PubMed] [Google Scholar]
  3. Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
  4. Binder H. J., Rawlins C. L. Electrolyte transport across isolated large intestinal mucosa. Am J Physiol. 1973 Nov;225(5):1232–1239. doi: 10.1152/ajplegacy.1973.225.5.1232. [DOI] [PubMed] [Google Scholar]
  5. Candia O. A., Schoen H. F. Selective effects of bumetanide on chloride transport in bullfrog cornea. Am J Physiol. 1978 Apr;234(4):F297–F301. doi: 10.1152/ajprenal.1978.234.4.F297. [DOI] [PubMed] [Google Scholar]
  6. Canessa M., Bize I., Adragna N., Tosteson D. Cotransport of lithium and potassium in human red cells. J Gen Physiol. 1982 Jul;80(1):149–168. doi: 10.1085/jgp.80.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chipperfield A. R. An effect of chloride on (Na+K) co-transport in human red blood cells. Nature. 1980 Jul 17;286(5770):281–282. doi: 10.1038/286281a0. [DOI] [PubMed] [Google Scholar]
  9. Davis G. R., Santa Ana C. A., Morawski S. G., Fordtran J. S. Effect of vasoactive intestinal polypeptide on active and passive transport in the human jejunum. J Clin Invest. 1981 Jun;67(6):1687–1694. doi: 10.1172/JCI110206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Degnan K. J., Karnaky K. J., Jr, Zadunaisky J. A. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J Physiol. 1977 Sep;271(1):155–191. doi: 10.1113/jphysiol.1977.sp011995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dharmsathaphorn K., Harms V., Yamashiro D. J., Hughes R. J., Binder H. J., Wright E. M. Preferential binding of vasoactive intestinal polypeptide to basolateral membrane of rat and rabbit enterocytes. J Clin Invest. 1983 Jan;71(1):27–35. doi: 10.1172/JCI110748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dharmsathaphorn K., McRoberts J. A., Mandel K. G., Tisdale L. D., Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol. 1984 Feb;246(2 Pt 1):G204–G208. doi: 10.1152/ajpgi.1984.246.2.G204. [DOI] [PubMed] [Google Scholar]
  13. Duffey M. E., Hainau B., Ho S., Bentzel C. J. Regulation of epithelial tight junction permeability by cyclic AMP. Nature. 1981 Dec 3;294(5840):451–453. doi: 10.1038/294451a0. [DOI] [PubMed] [Google Scholar]
  14. Epstein F. H. The shark rectal gland: a model for the active transport of chloride. Yale J Biol Med. 1979 Nov-Dec;52(6):517–523. [PMC free article] [PubMed] [Google Scholar]
  15. Forbush B., 3rd, Palfrey H. C. [3H]bumetanide binding to membranes isolated from dog kidney outer medulla. Relationship to the Na,K,Cl co-transport system. J Biol Chem. 1983 Oct 10;258(19):11787–11792. [PubMed] [Google Scholar]
  16. Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
  17. Garay R., Adragna N., Canessa M., Tosteson D. Outward sodium and potassium cotransport in human red cells. J Membr Biol. 1981;62(3):169–174. doi: 10.1007/BF01998162. [DOI] [PubMed] [Google Scholar]
  18. Geck P., Pietrzyk C., Burckhardt B. C., Pfeiffer B., Heinz E. Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells. Biochim Biophys Acta. 1980 Aug 4;600(2):432–447. doi: 10.1016/0005-2736(80)90446-0. [DOI] [PubMed] [Google Scholar]
  19. Haas M., McManus T. J. Bumetanide inhibits (Na + K + 2Cl) co-transport at a chloride site. Am J Physiol. 1983 Sep;245(3):C235–C240. doi: 10.1152/ajpcell.1983.245.3.C235. [DOI] [PubMed] [Google Scholar]
  20. Haas M., Schmidt W. F., 3rd, McManus T. J. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na + K + 2Cl] Co-transport. J Gen Physiol. 1982 Jul;80(1):125–147. doi: 10.1085/jgp.80.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Handler J. S., Perkins F. M., Johnson J. P. Studies of renal cell function using cell culture techniques. Am J Physiol. 1980 Jan;238(1):F1–F9. doi: 10.1152/ajprenal.1980.238.1.F1. [DOI] [PubMed] [Google Scholar]
  22. Handler J. S., Steele R. E., Sahib M. K., Wade J. B., Preston A. S., Lawson N. L., Johnson J. P. Toad urinary bladder epithelial cells in culture: maintenance of epithelial structure, sodium transport, and response to hormones. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4151–4155. doi: 10.1073/pnas.76.8.4151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Heintze K., Stewart C. P., Frizzell R. A. Sodium-dependent chloride secretion across rabbit descending colon. Am J Physiol. 1983 Apr;244(4):G357–G365. doi: 10.1152/ajpgi.1983.244.4.G357. [DOI] [PubMed] [Google Scholar]
  24. Holman G. D., Naftalin R. J., Simmons N. L., Walker M. Electrophysiological and electron-microscopical correlations with fluid and electrolyte secretion in rabbit ileum. J Physiol. 1979 May;290(2):367–386. doi: 10.1113/jphysiol.1979.sp012776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jacquez J. A. One-way fluxes of alpha-aminoisobutyric acid in Ehrlich ascites tumor cells. Trans effects and effects of sodium and potassium. J Gen Physiol. 1975 Jan;65(1):57–83. doi: 10.1085/jgp.65.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Marcial M. A., Carlson S. L., Madara J. L. Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationships. J Membr Biol. 1984;80(1):59–70. doi: 10.1007/BF01868690. [DOI] [PubMed] [Google Scholar]
  28. McRoberts J. A., Erlinger S., Rindler M. J., Saier M. H., Jr Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. Evidence for the cotransport of Na+, K+, and Cl-. J Biol Chem. 1982 Mar 10;257(5):2260–2266. [PubMed] [Google Scholar]
  29. Misfeldt D. S., Hamamoto S. T., Pitelka D. R. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1212–1216. doi: 10.1073/pnas.73.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Misfeldt D. S., Sanders M. J. Transepithelial transport in cell culture: stoichiometry of Na/phlorizin binding and Na/D-glucose cotransport. A two-step, two sodium model of binding and translocation. J Membr Biol. 1982;70(3):191–198. doi: 10.1007/BF01870562. [DOI] [PubMed] [Google Scholar]
  31. Murakami H., Masui H. Hormonal control of human colon carcinoma cell growth in serum-free medium. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3464–3468. doi: 10.1073/pnas.77.6.3464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Murer H., Hopfer U., Kinne R. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J. 1976 Mar 15;154(3):597–604. [PMC free article] [PubMed] [Google Scholar]
  33. Musch M. W., Orellana S. A., Kimberg L. S., Field M., Halm D. R., Krasny E. J., Jr, Frizzell R. A. Na+-K+-Cl- co-transport in the intestine of a marine teleost. Nature. 1982 Nov 25;300(5890):351–353. doi: 10.1038/300351a0. [DOI] [PubMed] [Google Scholar]
  34. Oberleithner H., Guggino W., Giebisch G. Mechanism of distal tubular chloride transport in Amphiuma kidney. Am J Physiol. 1982 Apr;242(4):F331–F339. doi: 10.1152/ajprenal.1982.242.4.F331. [DOI] [PubMed] [Google Scholar]
  35. Palfrey H. C., Greengard P., Feit P. W. Specific inhibition by "loop" diuretics of an anion-dependent Na+ + K+ cotransport system in avian erythrocytes. Ann N Y Acad Sci. 1980;341:134–138. doi: 10.1111/j.1749-6632.1980.tb47168.x. [DOI] [PubMed] [Google Scholar]
  36. Perkins F. M., Handler J. S. Transport properties of toad kidney epithelia in culture. Am J Physiol. 1981 Sep;241(3):C154–C159. doi: 10.1152/ajpcell.1981.241.3.C154. [DOI] [PubMed] [Google Scholar]
  37. Petersen K. U., Reuss L. Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J Gen Physiol. 1983 May;81(5):705–729. doi: 10.1085/jgp.81.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Powell D. W. Intestinal conductance and permselectivity changes with theophylline and choleragen. Am J Physiol. 1974 Dec;227(6):1436–1443. doi: 10.1152/ajplegacy.1974.227.6.1436. [DOI] [PubMed] [Google Scholar]
  39. Racusen L. C., Binder H. J. Alteration of large intestinal electrolyte transport by vasoactive intestinal polypeptide in the rat. Gastroenterology. 1977 Oct;73(4 Pt 1):790–796. [PubMed] [Google Scholar]
  40. Reuss L., Reinach P., Weinman S. A., Grady T. P. Intracellular ion activities and Cl-transport mechanisms in bullfrog corneal epithelium. Am J Physiol. 1983 May;244(5):C336–C347. doi: 10.1152/ajpcell.1983.244.5.C336. [DOI] [PubMed] [Google Scholar]
  41. Rindler M. J., McRoberts J. A., Saier M. H., Jr (Na+,K+)-cotransport in the Madin-Darby canine kidney cell line. Kinetic characterization of the interaction between Na+ and K+. J Biol Chem. 1982 Mar 10;257(5):2254–2259. [PubMed] [Google Scholar]
  42. Rindler M. J., Saier M. H., Jr Evidence for Na+/H+ antiport in cultured dog kidney cells (MDCK). J Biol Chem. 1981 Nov 10;256(21):10820–10825. [PubMed] [Google Scholar]
  43. Saito Y., Itoi K., Horiuchi K., Watanabe T. Mode of action of furosemide on the chloride-dependent short-circuit current across the ciliary body epithelium of toad eyes. J Membr Biol. 1980 Apr 15;53(2):85–93. doi: 10.1007/BF01870577. [DOI] [PubMed] [Google Scholar]
  44. Schwartz C. J., Kimberg D. V., Sheerin H. E., Field M., Said S. I. Vasoactive intestinal peptide stimulation of adenylate cyclase and active electrolyte secretion in intestinal mucosa. J Clin Invest. 1974 Sep;54(3):536–544. doi: 10.1172/JCI107790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shorofsky S. R., Field M., Fozzard H. A. The cellular mechanism of active chloride secretion in vertebrate epithelia: studies in intestine and trachea. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):597–607. doi: 10.1098/rstb.1982.0155. [DOI] [PubMed] [Google Scholar]
  46. Silva P., Stoff J., Field M., Fine L., Forrest J. N., Epstein F. H. Mechanism of active chloride secretion by shark rectal gland: role of Na-K-ATPase in chloride transport. Am J Physiol. 1977 Oct;233(4):F298–F306. doi: 10.1152/ajprenal.1977.233.4.F298. [DOI] [PubMed] [Google Scholar]
  47. Simmons N. L. Ion transport in 'tight' epithelial monolayers of MDCK cells. J Membr Biol. 1981 Apr 15;59(2):105–114. doi: 10.1007/BF01875708. [DOI] [PubMed] [Google Scholar]
  48. Stefani E., Cereijido M. Electrical properties of cultured epithelioid cells (MDCK). J Membr Biol. 1983;73(2):177–184. doi: 10.1007/BF01870440. [DOI] [PubMed] [Google Scholar]
  49. Vaillant C., Dimaline R., Dockray G. J. The distribution and cellular origin of vasoactive intestinal polypeptide in the avian gastrointestinal tract and pancreas. Cell Tissue Res. 1980;211(3):511–523. doi: 10.1007/BF00234405. [DOI] [PubMed] [Google Scholar]
  50. Waldman D. B., Gardner J. D., Zfass A. M., Makhlouf G. M. Effects of vasoactive intestinal peptide, secretin, and related peptides on rat colonic transport and adenylate cyclase activity. Gastroenterology. 1977 Sep;73(3):518–523. [PubMed] [Google Scholar]
  51. Watanabe T., Saito Y. Characteristics of ion transport across the isolated ciliary epithelium of the toad as studied by electrical measurements. Exp Eye Res. 1978 Aug;27(2):215–226. doi: 10.1016/0014-4835(78)90090-8. [DOI] [PubMed] [Google Scholar]
  52. Welsh M. J., Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile. J Membr Biol. 1982;70(3):227–238. doi: 10.1007/BF01870565. [DOI] [PubMed] [Google Scholar]
  53. Widdicombe J. H., Nathanson I. T., Highland E. Effects of "loop" diuretics on ion transport by dog tracheal epithelium. Am J Physiol. 1983 Nov;245(5 Pt 1):C388–C396. doi: 10.1152/ajpcell.1983.245.5.C388. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES