Abstract
Hodgkin's disease-derived giant cell lines (HD-cells) express high levels of ectosialyltransferase activity presumed to be a galactose-specific lectin recognizing the desialylated 3-fucosyl-N-acetyllactosamine structure (X-hapten). Both the anti-X-hapten monoclonal antibody VIM-D5 and a polyclonal antiserum to another galactose-lectin, the hepatic asialoglycoprotein receptor (HBP), recognize a 55,000-mol wt HD-cell protein (Paietta, E., R. J. Stockert, A. G. Morell, V. Diehl, and P. H. Weirnik. 1986. Proc. Natl. Acad. Sci. USA. 83:3451-3455.) That the expression of the 55,000-mol wt protein is restricted to HD-cells among X-hapten positive cells lines is confirmed in this study. The 55,000-mol wt protein is shown to be present on the cell surface and intracellularly, where an additional immunocrossreactive 150,000-mol wt protein is recognized. Extraction of the 55,000 mol wt protein from HD-cell lysates by affinity chromatography results in the loss of sialyltransferase activity. While evidence for a single protein possessing both the antigenic and the enzymatic activity is not direct, these results suggest that the ectosialyltransferase unique to HD-cells is a 55,000-mol wt membrane glycoprotein possessing the X-hapten oligosaccharide.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson N. N., Jr, Tan L. Y., Peters B. P. Galactosyl transferase-the liver plasma membrane binding-site for asialo-glycoproteins. Biochem Biophys Res Commun. 1973 Jul 2;53(1):112–118. doi: 10.1016/0006-291x(73)91408-3. [DOI] [PubMed] [Google Scholar]
- Baenziger J. U., Maynard Y. Human hepatic lectin. Physiochemical properties and specificity. J Biol Chem. 1980 May 25;255(10):4607–4613. [PubMed] [Google Scholar]
- Bernstein I. D., Andrews R. G., Cohen S. F., McMaster B. E. Normal and malignant human myelocytic and monocytic cells identified by monoclonal antibodies. J Immunol. 1982 Feb;128(2):876–881. [PubMed] [Google Scholar]
- Bezouska K., Táborský O., Kubrycht J., Pospísil M., Kocourek J. Carbohydrate-structure-dependent recognition of desialylated serum glycoproteins in the liver and leucocytes. Two complementary systems. Biochem J. 1985 Apr 15;227(2):345–354. doi: 10.1042/bj2270345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosmann H. B. Cell surface glycosyl transferases and acceptors in normal and RNA- and DNA-virus transformed fibroblasts. Biochem Biophys Res Commun. 1972 Aug 7;48(3):523–529. doi: 10.1016/0006-291x(72)90379-8. [DOI] [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Chu F. F., Doyle D. Turnover of plasma membrane proteins in rat hepatoma cells and primary cultures of rat hepatocytes. J Biol Chem. 1985 Mar 10;260(5):3097–3107. [PubMed] [Google Scholar]
- Diehl V., Kirchner H. H., Burrichter H., Stein H., Fonatsch C., Gerdes J., Schaadt M., Heit W., Uchanska-Ziegler B., Ziegler A. Characteristics of Hodgkin's disease-derived cell lines. Cancer Treat Rep. 1982 Apr;66(4):615–632. [PubMed] [Google Scholar]
- Dobrossy L., Pavelic Z. P., Bernacki R. J. A correlation between cell surface sialyltransferase, sialic acid, and glycosidase activities and the implantability of B16 murine melanoma. Cancer Res. 1981 Jun;41(6):2262–2266. [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geurts van Kessel A. H., Tetteroo P. A., von dem Borne A. E., Hagemeijer A., Bootsma D. Expression of human myeloid-associated surface antigens in human-mouse myeloid cell hybrids. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3748–3752. doi: 10.1073/pnas.80.12.3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Girardet C., Ladisch S., Heumann D., Mach J. P., Carrel S. Identification by a monoclonal antibody of a glycolipid highly expressed by cells from the human myeloid lineage. Int J Cancer. 1983 Aug 15;32(2):177–183. doi: 10.1002/ijc.2910320207. [DOI] [PubMed] [Google Scholar]
- Gooi H. C., Feizi T., Kapadia A., Knowles B. B., Solter D., Evans M. J. Stage-specific embryonic antigen involves alpha 1 goes to 3 fucosylated type 2 blood group chains. Nature. 1981 Jul 9;292(5819):156–158. doi: 10.1038/292156a0. [DOI] [PubMed] [Google Scholar]
- Huang L. C., Civin C. I., Magnani J. L., Shaper J. H., Ginsburg V. My-1, the human myeloid-specific antigen detected by mouse monoclonal antibodies, is a sugar sequence found in lacto-N-fucopentaose III. Blood. 1983 May;61(5):1020–1023. [PubMed] [Google Scholar]
- Kieda C. M., Bowles D. J., Ravid A., Sharon N. Lectins in lymphocyte membranes. FEBS Lett. 1978 Oct 15;94(2):391–396. doi: 10.1016/0014-5793(78)80985-5. [DOI] [PubMed] [Google Scholar]
- Knapp W. Monoclonal antibodies against differentiation antigens of myelopoiesis. Blut. 1982 Nov;45(5):301–308. doi: 10.1007/BF00319523. [DOI] [PubMed] [Google Scholar]
- Majdic O., Liszka K., Lutz D., Knapp W. Myeloid differentiation antigen defined by a monoclonal antibody. Blood. 1981 Dec;58(6):1127–1133. [PubMed] [Google Scholar]
- Paietta E., Stockert R. J., Morell A. G., Diehl V., Wiernik P. H. Lectin activity as a marker for Hodgkin disease cells. Proc Natl Acad Sci U S A. 1986 May;83(10):3451–3455. doi: 10.1073/pnas.83.10.3451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porter C. W., Bernacki R. J. Ultrastructural evidence for ectoglycosyltransferase systems. Nature. 1975 Aug 21;256(5519):648–650. doi: 10.1038/256648a0. [DOI] [PubMed] [Google Scholar]
- Pricer W. E., Jr, Hudgin R. L., Ashwell G., Stockert R. J., Morell A. G. A membrane receptor protein for asialoglycoproteins. Methods Enzymol. 1974;34:688–691. doi: 10.1016/s0076-6879(74)34090-6. [DOI] [PubMed] [Google Scholar]
- Skubitz K. M., Pessano S., Bottero L., Ferrero D., Rovera G., August J. T. Human granulocyte surface molecules identified by murine monoclonal antibodies. J Immunol. 1983 Oct;131(4):1882–1888. [PubMed] [Google Scholar]
- Stockert R. J., Gärtner U., Morell A. G., Wolkoff A. W. Effects of receptor-specific antibody on the uptake of desialylated glycoproteins in the isolated perfused rat liver. J Biol Chem. 1980 May 10;255(9):3830–3831. [PubMed] [Google Scholar]
- Stockert R. J., Morell A. G., Scheinberg I. H. Hepatic binding protein: the protective role of its sialic acid residues. Science. 1977 Aug 12;197(4304):667–668. doi: 10.1126/science.877581. [DOI] [PubMed] [Google Scholar]
- Tetteroo P. A., Mulder A., Lansdorp P. M., Zola H., Baker D. A., Visser F. J., von dem Borne A. E. Myeloid-associated antigen 3-alpha-fucosyl-N-acetyllactosamine (FAL): location on various granulocyte membrane glycoproteins and masking upon monocytic differentiation. Eur J Immunol. 1984 Dec;14(12):1089–1095. doi: 10.1002/eji.1830141205. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urdal D. L., Brentnall T. A., Bernstein I. D., Hakomori S. I. A granulocyte reactive monoclonal antibody, 1G10, identifies the Gal beta 1-4 (Fuc alpha 1-3)GlcNAc (X determinant) expressed in HL-60 cells on both glycolipid and glycoprotein molecules. Blood. 1983 Nov;62(5):1022–1026. [PubMed] [Google Scholar]