Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Feb;75(2):769–773. doi: 10.1172/JCI111759

Renal mechanism of action of rat atrial natriuretic factor.

C L Huang, J Lewicki, L K Johnson, M G Cogan
PMCID: PMC423577  PMID: 3156153

Abstract

There has been conflict as to whether crude extracts of atrial natriuretic factor increase renal solute excretion by a hemodynamic mechanism or by direct inhibition of tubular transport. To investigate this issue, seven rats were studied during a euvolemic control period and following continuous administration of pure, synthetic 24 amino acid atrial natriuretic factor. A 10-25-fold increase in urinary sodium and chloride excretion occurred with a brisk kaliuresis but little bicarbonaturia. Atrial natriuretic factor caused whole kidney glomerular filtration rate to increase from 1.17 +/- 0.04 to 1.52 +/- 0.07 ml/min (P less than 0.005). A parallel increase in single nephron glomerular filtration rate, from 34 +/- 1 to 44 +/- 2 nl/min (P less than 0.001), and from 26 +/- 1 to 37 +/- 2 nl/min (P less than 0.005) was measured at the end-proximal and early distal nephron sites, respectively. Appropriate for the higher flows were an increase in absolute proximal and loop reabsorptive rates for bicarbonate, chloride, and water, with a slight decrease in fractional solute and volume reabsorption in proximal and loop segments. To exclude the possibility that atrial natriuretic factor increased filtration rate only in anesthetized animals, eight unanesthetized rats were studied. Glomerular filtration rate increased by 45%, from 2.04 +/- 0.17 to 2.97 +/- 0.27 ml/min (P less than 0.005) without significant change in renal plasma flow, as reflected by 14C-para-aminohippurate clearance (5.4 +/- 0.5-5.6 +/- 0.9 ml/min). The clearance and micropuncture data did not preclude changes in relative blood flow distribution to or in transport by deep nephron segments. In conclusion, atrial natriuretic factor appears to increase renal solute excretion predominantly by a hemodynamic mechanism without directly inhibiting superficial tubular transport.

Full text

PDF
769

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atlas S. A., Kleinert H. D., Camargo M. J., Januszewicz A., Sealey J. E., Laragh J. H., Schilling J. W., Lewicki J. A., Johnson L. K., Maack T. Purification, sequencing and synthesis of natriuretic and vasoactive rat atrial peptide. Nature. 1984 Jun 21;309(5970):717–719. doi: 10.1038/309717a0. [DOI] [PubMed] [Google Scholar]
  2. Baer P. G., Navar L. G., Guyton A. C. Renal autoregulation, filtration rate, and electrolyte excretion during vasodilatation. Am J Physiol. 1970 Sep;219(3):619–625. doi: 10.1152/ajplegacy.1970.219.3.619. [DOI] [PubMed] [Google Scholar]
  3. Borenstein H. B., Cupples W. A., Sonnenberg H., Veress A. T. The effect of a natriuretic atrial extract on renal haemodynamics and urinary excretion in anaesthetized rats. J Physiol. 1983 Jan;334:133–140. doi: 10.1113/jphysiol.1983.sp014484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner B. M., Ueki I. F., Daugharty T. M. On estimating colloid osmotic pressure in pre- and postglomerular plasma in the rat. Kidney Int. 1972 Jul;2(1):51–53. doi: 10.1038/ki.1972.68. [DOI] [PubMed] [Google Scholar]
  5. Briggs J. P., Steipe B., Schubert G., Schnermann J. Micropuncture studies of the renal effects of atrial natriuretic substance. Pflugers Arch. 1982 Dec;395(4):271–276. doi: 10.1007/BF00580789. [DOI] [PubMed] [Google Scholar]
  6. Camargo M. J., Kleinert H. D., Atlas S. A., Sealey J. E., Laragh J. H., Maack T. Ca-dependent hemodynamic and natriuretic effects of atrial extract in isolated rat kidney. Am J Physiol. 1984 Apr;246(4 Pt 2):F447–F456. doi: 10.1152/ajprenal.1984.246.4.F447. [DOI] [PubMed] [Google Scholar]
  7. Cogan M. G., Maddox D. A., Lucci M. S., Rector F. C., Jr Control of proximal bicarbonate reabsorption in normal and acidotic rats. J Clin Invest. 1979 Nov;64(5):1168–1180. doi: 10.1172/JCI109570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cogan M. G., Mueller M. R. NaHCO3 therapy corrects the increased urinary Na, K, Cl and H2O excretion induced by NH4Cl. Miner Electrolyte Metab. 1983;9(3):132–136. [PubMed] [Google Scholar]
  9. Cogan M. G., Rector F. C., Jr Determinants of proximal bicarbonate, chloride, and water reabsorption during carbonic anhydrase inhibition. Am J Physiol. 1982 Mar;242(3):F274–F284. doi: 10.1152/ajprenal.1982.242.3.F274. [DOI] [PubMed] [Google Scholar]
  10. Cogan M. G. Volume expansion predominantly inhibits proximal reabsorption of NaCl rather than NaHCO3. Am J Physiol. 1983 Aug;245(2):F272–F275. doi: 10.1152/ajprenal.1983.245.2.F272. [DOI] [PubMed] [Google Scholar]
  11. Dworkin L. D., Ichikawa I., Brenner B. M. Hormonal modulation of glomerular function. Am J Physiol. 1983 Feb;244(2):F95–104. doi: 10.1152/ajprenal.1983.244.2.F95. [DOI] [PubMed] [Google Scholar]
  12. Keeler R. Atrial natriuretic factor has a direct, prostaglandin-independent action on kidneys. Can J Physiol Pharmacol. 1982 Aug;60(8):1078–1082. doi: 10.1139/y82-155. [DOI] [PubMed] [Google Scholar]
  13. Keeler R., Azzarolo A. M. Effects of atrial natriuretic factor on renal handling of water and electrolytes in rats. Can J Physiol Pharmacol. 1983 Sep;61(9):996–1002. doi: 10.1139/y83-149. [DOI] [PubMed] [Google Scholar]
  14. Levy M. Further observations on the response of the glomerular filtration rate to glucagon: comparison with secretin. Can J Physiol Pharmacol. 1975 Feb;53(1):81–85. doi: 10.1139/y75-010. [DOI] [PubMed] [Google Scholar]
  15. Levy M., Starr N. L. The mechanism of glucagon-induced natriuresis in dogs. Kidney Int. 1972 Aug;2(2):76–84. doi: 10.1038/ki.1972.74. [DOI] [PubMed] [Google Scholar]
  16. Morgan T., Berliner R. W. A study by continuous microperfusion of water and electrolyte movements in the loop of Henle and distal tubule of the rat. Nephron. 1969;6(3):388–405. doi: 10.1159/000179741. [DOI] [PubMed] [Google Scholar]
  17. Pollock D. M., Banks R. O. Effect of atrial extract on renal function in the rat. Clin Sci (Lond) 1983 Jul;65(1):47–55. doi: 10.1042/cs0650047. [DOI] [PubMed] [Google Scholar]
  18. Sagnella G. A., MacGregor G. A. Physiology: cardiac peptides and the control of sodium excretion. Nature. 1984 Jun 21;309(5970):666–667. doi: 10.1038/309666a0. [DOI] [PubMed] [Google Scholar]
  19. Schnermann J. Microperfusion study of single short loops of Henle in rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;300(4):255–282. doi: 10.1007/BF00364298. [DOI] [PubMed] [Google Scholar]
  20. Sonnenberg H., Chong C. K., Veress A. T. Cardiac atrial factor--an endogenous diuretic? Can J Physiol Pharmacol. 1981 Dec;59(12):1278–1279. doi: 10.1139/y81-200. [DOI] [PubMed] [Google Scholar]
  21. Sonnenberg H., Cupples W. A., de Bold A. J., Veress A. T. Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can J Physiol Pharmacol. 1982 Sep;60(9):1149–1152. doi: 10.1139/y82-166. [DOI] [PubMed] [Google Scholar]
  22. Yamanaka M., Greenberg B., Johnson L., Seilhamer J., Brewer M., Friedemann T., Miller J., Atlas S., Laragh J., Lewicki J. Cloning and sequence analysis of the cDNA for the rat atrial natriuretic factor precursor. Nature. 1984 Jun 21;309(5970):719–722. doi: 10.1038/309719a0. [DOI] [PubMed] [Google Scholar]
  23. de Bold A. J., Borenstein H. B., Veress A. T., Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981 Jan 5;28(1):89–94. doi: 10.1016/0024-3205(81)90370-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES