Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Mar;75(3):825–831. doi: 10.1172/JCI111778

Structural heterogeneity of the axonemes of respiratory cilia and sperm flagella in normal men.

L J Wilton, H Teichtahl, P D Temple-Smith, D M de Kretser
PMCID: PMC423610  PMID: 3156880

Abstract

The ultrastructure of normal human cilia and flagella was examined and quantitatively assessed to determine the normal variations in the structure of the axoneme. Ciliated respiratory epithelial cells and spermatozoa from 10 normal, nonsmoking male volunteers who had normal semen parameters were fixed for electron microscopy. Tannic acid and MgSO4 were included during fixation to enhance, in particular, axonemal components. In 75 axonemal cross sections per sample, the number of outer doublet and central singlet microtubules, outer and inner dynein arms, and radial spokes were recorded. Statistical analysis of the results showed a marked reduction, from the expected value of nine, in the numbers of inner dynein arms (mean +/- SE, cilia, 5.31 +/- 0.13; sperm, 5.38 +/- 0.16) and radial spokes (cilia, 4.95 +/- 0.22; sperm, 5.80 +/- 0.19). The ideal axoneme with all its structural components was seen in only 0.13% of cilia and 0.80% of sperm tails. Significantly more doublet microtubules (P less than 0.05) and less central microtubules (P less than 0.01) and radial spokes (P less than 0.01) were seen in cilia than in sperm tail axonemes. Between subjects there was little variation in the mean number of a structure seen per axoneme. However, within each sample, the variation was considerably higher, particularly for the inner and outer dynein arms and radial spokes. The doublet microtubules had significantly greater standard deviations in the sperm tails compared with the cilia (P less than 0.01), and furthermore, a significantly greater number of sperm tails compared with cilia showed the incorrect number of doublet microtubules (P less than 0.02). In one semen sample, with normal semen analysis, 20% of the sperm tails showed incorrect numbers of doublet microtubules, ranging from 12 + 2 to 5 + 2 compared with only 1.3% in cilia from this subject. This study has demonstrated that the ideal axoneme is rarely seen even in normal samples, probably because of the technical difficulties in resolution and visualization, and stresses the need for thorough documentation of axonemal ultrastructure. This work provides a normal data base for comparison with patients who have chronic respiratory disease and suspected infertility.

Full text

PDF
825

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afzelius B. A. A human syndrome caused by immotile cilia. Science. 1976 Jul 23;193(4250):317–319. doi: 10.1126/science.1084576. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D. A reinvestigation of cross-sections of cilia. J Cell Biol. 1968 Jun;37(3):825–831. doi: 10.1083/jcb.37.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen I., Camner P., Jensen P. L., Philipson K., Proctor D. F. A comparison of nasal and tracheobronchial clearance. Arch Environ Health. 1974 Nov;29(5):290–293. doi: 10.1080/00039896.1974.10666589. [DOI] [PubMed] [Google Scholar]
  4. Chao J., Turner J. A., Sturgess J. M. Genetic heterogeneity of dynein-deficiency in cilia from patients with respiratory disease. Am Rev Respir Dis. 1982 Aug;126(2):302–305. doi: 10.1164/arrd.1982.126.2.302. [DOI] [PubMed] [Google Scholar]
  5. Eliasson R., Mossberg B., Camner P., Afzelius B. A. The immotile-cilia syndrome. A congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility. N Engl J Med. 1977 Jul 7;297(1):1–6. doi: 10.1056/NEJM197707072970101. [DOI] [PubMed] [Google Scholar]
  6. Fawcett D. W. The mammalian spermatozoon. Dev Biol. 1975 Jun;44(2):394–436. doi: 10.1016/0012-1606(75)90411-x. [DOI] [PubMed] [Google Scholar]
  7. Fenster L. F., Wheelis R. F., Ryan J. A., Jr Acute respiratory distress syndrome after peritoneovenous shunt. Am Rev Respir Dis. 1982 Feb;125(2):244–245. doi: 10.1164/arrd.1982.125.2.244. [DOI] [PubMed] [Google Scholar]
  8. Fox B., Bull T. B., Arden G. B. Variations in the ultrastructure of human nasal cilia including abnormalities found in retinitis pigmentosa. J Clin Pathol. 1980 Apr;33(4):327–335. doi: 10.1136/jcp.33.4.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jonsson M. S., McCormick J. R., Gillies C. G., Gondos B. Kartagener's syndrome with motile spermatozoa. N Engl J Med. 1982 Oct 28;307(18):1131–1133. doi: 10.1056/NEJM198210283071807. [DOI] [PubMed] [Google Scholar]
  10. Linck R. W. The structure of microtubules. Ann N Y Acad Sci. 1982;383:98–121. doi: 10.1111/j.1749-6632.1982.tb23164.x. [DOI] [PubMed] [Google Scholar]
  11. Lungarella G., Fonzi L., Burrini A. G. Ultrastructural abnormalities in respiratory cilia and sperm tails in a patient with Kartagener's syndrome. Ultrastruct Pathol. 1982 Oct-Dec;3(4):319–323. doi: 10.3109/01913128209018554. [DOI] [PubMed] [Google Scholar]
  12. Pedersen H., Mygind N. Absence of axonemal arms in nasal mucosa cilia in Kartagener's syndrome. Nature. 1976 Aug 5;262(5568):494–495. doi: 10.1038/262494a0. [DOI] [PubMed] [Google Scholar]
  13. Pedersen M., Morkassel E., Nielsen M. H., Mygind N. Kartagener's syndrome. Preliminary report on cilia structure, function, and upper airway symptoms. Chest. 1981 Dec;80(6 Suppl):858–860. doi: 10.1378/chest.80.6.858. [DOI] [PubMed] [Google Scholar]
  14. Pedersen M., Mygind N. Ciliary motility in the 'immotile cilia syndrome'. First results of microphoto-oscillographic studies. Br J Dis Chest. 1980 Jul;74(3):239–244. doi: 10.1016/0007-0971(80)90049-2. [DOI] [PubMed] [Google Scholar]
  15. Rossman C. M., Forrest J. B., Lee R. M., Newhouse A. F., Newhouse M. T. The dyskinetic cilia syndrome; abnormal ciliary motility in association with abnormal ciliary ultrastructure. Chest. 1981 Dec;80(6 Suppl):860–865. [PubMed] [Google Scholar]
  16. Rossman C. M., Lee R. M., Forrest J. B., Newhouse M. T. Nasal ciliary ultrastructure and function in patients with primary ciliary dyskinesia compared with that in normal subjects and in subjects with various respiratory diseases. Am Rev Respir Dis. 1984 Jan;129(1):161–167. doi: 10.1164/arrd.1984.129.1.161. [DOI] [PubMed] [Google Scholar]
  17. Schneeberger E. E., McCormack J., Issenberg H. J., Schuster S. R., Gerald P. S. Heterogeneity of ciliary morphology in the immotile-cilia syndrome in man. J Ultrastruct Res. 1980 Oct;73(1):34–43. doi: 10.1016/0022-5320(80)90114-8. [DOI] [PubMed] [Google Scholar]
  18. Sturgess J. M., Chao J., Wong J., Aspin N., Turner J. A. Cilia with defective radial spokes: a cause of human respiratory disease. N Engl J Med. 1979 Jan 11;300(2):53–56. doi: 10.1056/NEJM197901113000201. [DOI] [PubMed] [Google Scholar]
  19. Takasaka T., Sato M., Onodera A. Atypical cilia of the human nasal mucosa. Ann Otol Rhinol Laryngol. 1980 Jan-Feb;89(1 Pt 1):37–45. doi: 10.1177/000348948008900110. [DOI] [PubMed] [Google Scholar]
  20. Waite D. A., Wakefield S. J., Mackay J. B., Ross I. T. Mucociliary transport and ultrastructural abnormalities in Polynesian bronchiectasis. Chest. 1981 Dec;80(6 Suppl):896–898. doi: 10.1378/chest.80.6.896. [DOI] [PubMed] [Google Scholar]
  21. Waite D., Wakefield J. S., Steele R., Mackay J., Ross I., Wallace J. Cilia and sperm tail abnormalities in Polynesian bronchiectatics. Lancet. 1978 Jul 15;2(8081):132–133. doi: 10.1016/s0140-6736(78)91511-8. [DOI] [PubMed] [Google Scholar]
  22. Warner F. D. Cation-induced attachment of ciliary dynein cross-bridges. J Cell Biol. 1978 Jun;77(3):R19–R26. doi: 10.1083/jcb.77.3.r19. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES