Abstract
Developmental aspects of taurocholate transport into ileal brush border membrane vesicles were studied in 2-wk-old (suckling), 3-wk-old (weanling), and 6-wk-old (adolescent) rats. Taurocholate uptake (picomoles per milligram protein) into brush border membrane vesicles prepared from 2-wk-old rats was similar under Na+ and K+ gradient conditions (outside greater than inside). By contrast, uptake in 3- and 6-wk-old rats was significantly enhanced at 20 s, and at 1, 2, and 5 min of incubation in the presence of a Na+ gradient when compared with a K+ gradient incubation (P less than 0.05). Under isotope exchange conditions, a plot of active uptake velocity versus taurocholate concentration (0.10-1.0 mM) in 2-wk-old rat membrane vesicles was linear and approached the horizontal axis, suggesting the absence of active transport. However, similar plots in 3- and 6-wk-old rats described a rectangular hyperbola, indicating a Na+-dependent, saturable cotransport system. Woolf-Augustinsson-Hofstee plots of the uptake velocity versus concentration data from 3- and 6-wk-old rat brush border membrane vesicles yielded Vmax values that were not significantly different, 844 and 884 pmol uptake/mg protein per 120 s, respectively. The respective Km values were 0.59 and 0.66 mM taurocholate. The induction of an electrochemical diffusion potential by incubating K+-loaded vesicles with valinomycin did not significantly enhance taurocholate uptake in 2-, 3-, or 6-wk-old rat vesicle preparations. These data indicate that taurocholate transport into rat ileal brush border membrane vesicles is mediated by an electroneutral, sodium-coupled, cotransport system that is incompletely developed in the 2-wk-old suckling rat but fully developed by the time of weaning at 3 wk of age.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beesley R. C., Faust R. G. Sodium ion-coupled uptake of taurocholate by intestinal brush-border membrane vesicles. Biochem J. 1979 Feb 15;178(2):299–303. doi: 10.1042/bj1780299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
- Henning S. J. Biochemistry of intestinal development. Environ Health Perspect. 1979 Dec;33:9–16. doi: 10.1289/ehp.79339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lack L., Walker J. T., Hsu C. Y. Taurocholate uptake by membrane vesicles prepared from ileal brush borders. Life Sci. 1977 May 1;20(9):1607–1611. doi: 10.1016/0024-3205(77)90455-6. [DOI] [PubMed] [Google Scholar]
- Lester R., Smallwood R. A., Little J. M., Brown A. S., Piasecki G. J., Jackson B. T. Fetal bile salt metabolism. The intestinal absorption of bile salt. J Clin Invest. 1977 Jun;59(6):1009–1016. doi: 10.1172/JCI108723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Little J. M., Lester R. Ontogenesis of intestinal bile salt absorption in the neonatal rat. Am J Physiol. 1980 Oct;239(4):G319–G323. doi: 10.1152/ajpgi.1980.239.4.G319. [DOI] [PubMed] [Google Scholar]
- Lücke H., Stange G., Kinne R., Murer H. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum. Biochem J. 1978 Sep 15;174(3):951–958. doi: 10.1042/bj1740951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murer H., Kinne R. The use of isolated membrane vesicles to study epithelial transport processes. J Membr Biol. 1980 Jul 15;55(2):81–95. doi: 10.1007/BF01871151. [DOI] [PubMed] [Google Scholar]
- Pressman B. C. Ionophorous antibiotics as models for biological transport. Fed Proc. 1968 Nov-Dec;27(6):1283–1288. [PubMed] [Google Scholar]
- Rouse D. J., Lack L. Ion requirements for taurocholate transport by ileal brush border membrane vesicles. Life Sci. 1979 Jul 2;25(1):45–52. doi: 10.1016/0024-3205(79)90488-0. [DOI] [PubMed] [Google Scholar]
- Rouse D. J., Lack L. Short-term studies of taurocholate uptake by ileal brush border membrane vesicles: anion effects. Biochim Biophys Acta. 1980 Jun 20;599(1):324–329. doi: 10.1016/0005-2736(80)90078-4. [DOI] [PubMed] [Google Scholar]
- Scharschmidt B. F., Keeffe E. B., Blankenship N. M., Ockner R. K. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity. J Lab Clin Med. 1979 May;93(5):790–799. [PubMed] [Google Scholar]
- Watkins J. B., Ingall D., Szczepanik P., Klein P. D., Lester R. Bile-salt metabolism in the newborn. Measurement of pool size and synthesis by stable isotope technic. N Engl J Med. 1973 Mar 1;288(9):431–434. doi: 10.1056/NEJM197303012880902. [DOI] [PubMed] [Google Scholar]
- Watkins J. B., Szczepanik P., Gould J. B., Klein P., Lester R. Bile salt metabolism in the human premature infant. Preliminary observations of pool size and synthesis rate following prenatal administration of dexamethasone and phenobarbital. Gastroenterology. 1975 Sep;69(3):706–713. [PubMed] [Google Scholar]
- Wilson F. A., Burckhardt G., Murer H., Rumrich G., Ullrich K. J. Sodium-coupled taurocholate transport in the proximal convolution of the rat kidney in vivo and in vitro. J Clin Invest. 1981 Apr;67(4):1141–1150. doi: 10.1172/JCI110128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson F. A., Treanor L. L. Glycodeoxycholate transport in brush border membrane vesicles isolated from rat jejunum and ileum. Biochim Biophys Acta. 1979 Jul 5;554(2):430–440. doi: 10.1016/0005-2736(79)90382-1. [DOI] [PubMed] [Google Scholar]
- de Belle R. C., Vaupshas V., Vitullo B. B., Haber L. R., Shaffer E., Mackie G. G., Owen H., Little J. M., Lester R. Intestinal absorption of bile salts: immature development in the neonate. J Pediatr. 1979 Mar;94(3):472–476. doi: 10.1016/s0022-3476(79)80604-6. [DOI] [PubMed] [Google Scholar]
