Abstract
The relationship between physical fitness and bone mass in the femoral neck, lumbar spine, and forearm was studied in 84 normal women. Femoral neck and lumbar spine bone mineral density and forearm bone mineral content were estimated by absorptiometry. Fitness was quantitated from predicted maximal oxygen uptake. Femoral neck and lumbar bone mineral density were significantly correlated with fitness as well as age and weight. In the 46 postmenopausal subjects, fitness was the only significant predictor of femoral neck bone mineral density, and both weight and fitness predicted the lumbar bone mineral density. These data represent the first demonstration of a correlation between physical fitness, and, by implication, habitual physical activity, and bone mass in the femoral neck; they also support the previous reported correlation between lumbar bone mass and physical activity. The data suggest that increased physical fitness may increase bone mass at the sites of clinically important fractures in osteoporosis.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASTRAND P. O., RYHMING I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J Appl Physiol. 1954 Sep;7(2):218–221. doi: 10.1152/jappl.1954.7.2.218. [DOI] [PubMed] [Google Scholar]
- Aloia J. F., Cohn S. H., Ostuni J. A., Cane R., Ellis K. Prevention of involutional bone loss by exercise. Ann Intern Med. 1978 Sep;89(3):356–358. doi: 10.7326/0003-4819-89-3-356. [DOI] [PubMed] [Google Scholar]
- Aloia J. F., Cohn S. H., Vaswani A., Yeh J. K., Yuen K., Ellis K. Risk factors for postmenopausal osteoporosis. Am J Med. 1985 Jan;78(1):95–100. doi: 10.1016/0002-9343(85)90468-1. [DOI] [PubMed] [Google Scholar]
- Black-Sandler R., LaPorte R. E., Sashin D., Kuller L. H., Sternglass E., Cauley J. A., Link M. M. Determinants of bone mass in menopause. Prev Med. 1982 May;11(3):269–280. doi: 10.1016/0091-7435(82)90053-6. [DOI] [PubMed] [Google Scholar]
- Brewer V., Meyer B. M., Keele M. S., Upton S. J., Hagan R. D. Role of exercise in prevention of involutional bone loss. Med Sci Sports Exerc. 1983;15(6):445–449. [PubMed] [Google Scholar]
- Burr D. B., Martin R. B., Martin P. A. Lower extremity loads stimulate bone formation in the vertebral column: implications for osteoporosis. Spine (Phila Pa 1976) 1983 Oct;8(7):681–686. doi: 10.1097/00007632-198310000-00001. [DOI] [PubMed] [Google Scholar]
- Chalmers J., Ho K. C. Geographical variations in senile osteoporosis. The association with physical activity. J Bone Joint Surg Br. 1970 Nov;52(4):667–675. [PubMed] [Google Scholar]
- Cotes J. E., Davies C. T., Edholm O. G., Healy M. J., Tanner J. M. Factors relating to the aerobic capacity of 46 healthy British males and females, ages 18 to 28 years. Proc R Soc Lond B Biol Sci. 1969 Oct 7;174(1034):91–114. doi: 10.1098/rspb.1969.0082. [DOI] [PubMed] [Google Scholar]
- Dalén N., Olsson K. E. Bone mineral content and physical activity. Acta Orthop Scand. 1974;45(2):170–174. doi: 10.3109/17453677408989136. [DOI] [PubMed] [Google Scholar]
- Daniell H. W. Osteoporosis of the slender smoker. Vertebral compression fractures and loss of metacarpal cortex in relation to postmenopausal cigarette smoking and lack of obesity. Arch Intern Med. 1976 Mar;136(3):298–304. doi: 10.1001/archinte.136.3.298. [DOI] [PubMed] [Google Scholar]
- Glassford R. G., Baycroft G. H., Sedgwick A. W., Macnab R. B. Comparison of maximal oxygen uptake values determined by predicted and actual methods. J Appl Physiol. 1965 May;20(3):509–513. doi: 10.1152/jappl.1965.20.3.509. [DOI] [PubMed] [Google Scholar]
- Harrison M. H., Brown G. A., Cochrane L. A. Maximal oxygen uptake: its measurement, application, and limitations. Aviat Space Environ Med. 1980 Oct;51(10):1123–1127. [PubMed] [Google Scholar]
- Harrison M. H., Bruce D. L., Brown G. A., Cochrane L. A. A comparison of some indirect methods for predicting maximal oxygen uptake. Aviat Space Environ Med. 1980 Oct;51(10):1128–1133. [PubMed] [Google Scholar]
- Huddleston A. L., Rockwell D., Kulund D. N., Harrison R. B. Bone mass in lifetime tennis athletes. JAMA. 1980 Sep 5;244(10):1107–1109. [PubMed] [Google Scholar]
- Jones H. H., Priest J. D., Hayes W. C., Tichenor C. C., Nagel D. A. Humeral hypertrophy in response to exercise. J Bone Joint Surg Am. 1977 Mar;59(2):204–208. [PubMed] [Google Scholar]
- Kappagoda C. T., Linden R. J., Newell J. P. Effect of the Canadian Air Force training programme on a submaximal exercise test. Q J Exp Physiol Cogn Med Sci. 1979 Jul;64(3):185–204. doi: 10.1113/expphysiol.1979.sp002472. [DOI] [PubMed] [Google Scholar]
- Krølner B., Pors Nielsen S., Lund B., Lund B., Sørensen O. H., Uhrenholdt A. Measurement of bone mineral content (BMC) of the lumbar spine, II. correlation between forearm BMC and lumbar spine BMC. Scand J Clin Lab Invest. 1980;40(7):665–670. doi: 10.1080/00365518009091979. [DOI] [PubMed] [Google Scholar]
- Krølner B., Toft B., Pors Nielsen S., Tøndevold E. Physical exercise as prophylaxis against involutional vertebral bone loss: a controlled trial. Clin Sci (Lond) 1983 May;64(5):541–546. doi: 10.1042/cs0640541. [DOI] [PubMed] [Google Scholar]
- Krølner B., Tøndevold E., Toft B., Berthelsen B., Nielsen S. P. Bone mass of the axial and the appendicular skeleton in women with Colles' fracture: its relation to physical activity. Clin Physiol. 1982 Apr;2(2):147–157. doi: 10.1111/j.1475-097x.1982.tb00017.x. [DOI] [PubMed] [Google Scholar]
- Mazess R. B., Peppler W. W., Chesney R. W., Lange T. A., Lindgren U., Smith E., Jr Does bone measurement on the radius indicate skeletal status? Concise communication. J Nucl Med. 1984 Mar;25(3):281–288. [PubMed] [Google Scholar]
- Mazess R. B., Whedon G. D. Immobilization and bone. Calcif Tissue Int. 1983 May;35(3):265–267. doi: 10.1007/BF02405043. [DOI] [PubMed] [Google Scholar]
- Nilsson B. E. Parity and osteoporosis. Surg Gynecol Obstet. 1969 Jul;129(1):27–28. [PubMed] [Google Scholar]
- Nilsson B. E., Westlin N. E. Bone density in athletes. Clin Orthop Relat Res. 1971;77:179–182. [PubMed] [Google Scholar]
- Oyster N., Morton M., Linnell S. Physical activity and osteoporosis in post-menopausal women. Med Sci Sports Exerc. 1984;16(1):44–50. [PubMed] [Google Scholar]
- Rambaut P. C., Johnston R. S. Prolonged weightlessness and calcium loss in man. Acta Astronaut. 1979 Sep;6(9):1113–1122. doi: 10.1016/0094-5765(79)90059-6. [DOI] [PubMed] [Google Scholar]
- Riggs B. L., Wahner H. W., Dunn W. L., Mazess R. B., Offord K. P., Melton L. J., 3rd Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest. 1981 Feb;67(2):328–335. doi: 10.1172/JCI110039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riggs B. L., Wahner H. W., Seeman E., Offord K. P., Dunn W. L., Mazess R. B., Johnson K. A., Melton L. J., 3rd Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest. 1982 Oct;70(4):716–723. doi: 10.1172/JCI110667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAVILLE P. D. CHANGES IN BONE MASS WITH AGE AND ALCOHOLISM. J Bone Joint Surg Am. 1965 Apr;47:492–499. [PubMed] [Google Scholar]
- Sambrook P. N., Bartlett C., Evans R., Hesp R., Katz D., Reeve J. Measurement of lumbar spine bone mineral: a comparison of dual photon absorptiometry and computed tomography. Br J Radiol. 1985 Jul;58(691):621–624. doi: 10.1259/0007-1285-58-691-621. [DOI] [PubMed] [Google Scholar]
- Saunders J. B., Wodak A. D., Haines A., Powell-Jackson P. R., Portmann B., Davis M., Williams R. Accelerated development of alcoholic cirrhosis in patients with HLA-B8. Lancet. 1982 Jun 19;1(8286):1381–1384. doi: 10.1016/s0140-6736(82)92500-4. [DOI] [PubMed] [Google Scholar]
- Schlenker R. A. Proceedings: Percentages of cortical and trabecular bone mineral mass in the radius and ulna. AJR Am J Roentgenol. 1976 Jun;126(6):1309–1312. doi: 10.2214/ajr.126.6.1309. [DOI] [PubMed] [Google Scholar]
- Smith D. M., Khairi M. R., Norton J., Johnston C. C., Jr Age and activity effects on rate of bone mineral loss. J Clin Invest. 1976 Sep;58(3):716–721. doi: 10.1172/JCI108518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevenson J. C., Whitehead M. I. Postmenopausal osteoporosis. 1982 Aug 28-Sep 4Br Med J (Clin Res Ed) 285(6342):585–588. doi: 10.1136/bmj.285.6342.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart A. F., Adler M., Byers C. M., Segre G. V., Broadus A. E. Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N Engl J Med. 1982 May 13;306(19):1136–1140. doi: 10.1056/NEJM198205133061903. [DOI] [PubMed] [Google Scholar]
- Teräslinna P., Ismail A. H., MacLeod D. F. Nomogram by Astrand and Ryhming as a predictor of maximum oxygen intake. J Appl Physiol. 1966 Mar;21(2):513–515. doi: 10.1152/jappl.1966.21.2.513. [DOI] [PubMed] [Google Scholar]
- Wahner H. W., Dunn W. L., Riggs B. L. Assessment of bone mineral. Part 2. J Nucl Med. 1984 Nov;25(11):1241–1253. [PubMed] [Google Scholar]
- de Vernejoul M. C., Bielakoff J., Herve M., Gueris J., Hott M., Modrowski D., Kuntz D., Miravet L., Ryckewaert A. Evidence for defective osteoblastic function. A role for alcohol and tobacco consumption in osteoporosis in middle-aged men. Clin Orthop Relat Res. 1983 Oct;(179):107–115. [PubMed] [Google Scholar]