Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Mar;75(3):954–960. doi: 10.1172/JCI111796

Vitamin D-dependent rickets type II. Defective induction of 25-hydroxyvitamin D3-24-hydroxylase by 1,25-dihydroxyvitamin D3 in cultured skin fibroblasts.

G T Gamblin, U A Liberman, C Eil, R W Downs Jr, D A DeGrange, S J Marx
PMCID: PMC423634  PMID: 3872316

Abstract

1,25(OH)2D3 induces 25(OH)D3-24-hydroxylase (24-OHase) in cultured skin fibroblasts from normal subjects. We evaluated 24-OHase induction by 1,25(OH)2D3 in skin fibroblasts from 10 normal subjects and from four unrelated patients with hereditary resistance to 1,25(OH)2D or vitamin D-dependent rickets type II (DD II). Fibroblasts were preincubated with varying concentrations of 1,25(OH)2D3 for 15 h and were then incubated with 0.5 microM [3H]25(OH)D3 at 37 degrees C for 30 min; lipid extracts of the cells were analyzed for [3H]24,25(OH)2D3 by high performance liquid chromatography and periodate oxidation. Apparent maximal [3H]24,25(OH)2D3 production in normal cell lines was 9 pmol/10(6) cells per 30 min and occurred after induction with 10(-8) M 1,25(OH)2D3. 24-OHase induction was detectable in normal fibroblasts at approximately 3 X 10(-10) M 1,25(OH)2D3. [3H]24,25(OH)2D3 formation after exposure to 1,25(OH)2D3 was abnormal in fibroblasts from all four patients with DD II. In fibroblasts from two patients with DD II, [3H]24,25(OH)2D3 formation was unmeasurable (below 0.2 pmol/10(6) cells per 30 min) at 1,25(OH)2D3 concentrations up to 10(-6) M. Fibroblasts from the other two patients with DD II required far higher than normal concentrations of 1,25(OH)2D3 for detectable [3H]24,25(OH)2D3 induction. In one, [3H]24,25(OH)2D3 production reached 2.9 pmol/10(6) cells per 30 min at 10(-6) M 1,25(OH)2D3 (30% normal maximum at 10(-6) M 1,25(OH)2D3). In the other, [3H]24,25(OH)2D3 production achieved normal levels, 7.3 pmol/10(6) cells per 30 min after 10(-6) M 1,25(OH)2D3. The two patients whose cells had a detectable 24-OHase induction by 1,25(OH)2D3 showed a calcemic response to high doses of calciferols in vivo. Our current observations correlate with these two patients' responsiveness to calciferols in vivo and suggest that their target organ defects can be partially or completely overcome with extremely high concentrations of 1,25(OH)2D3. The two patients whose cells showed no detectable 24-OHase induction in vitro failed to show a calcemic response to high doses of calciferols in vivo. In conclusion: (a) the measurement of 24-OHase induction by 1,25(OH)2D3 in cultured skin fibroblasts is a sensitive in vitro test for defective genes in the 1,25(OH)2D effector pathway. (b) This assay provides a useful tool for characterizing the target tissue defects in DD II and predicting response to calciferol therapy.

Full text

PDF
954

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. S., Gacad M. A., Singer F. R. Specific internalization and action of 1,25-dihydroxyvitamin D3 in cultured dermal fibroblasts from patients with X-linked hypophosphatemia. J Clin Endocrinol Metab. 1984 Sep;59(3):556–560. doi: 10.1210/jcem-59-3-556. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Balsan S., Garabedian M., Liberman U. A., Eil C., Bourdeau A., Guillozo H., Grimberg R., Le Deunff M. J., Lieberherr M., Guimbaud P. Rickets and alopecia with resistance to 1,25-dihydroxyvitamin D: two different clinical courses with two different cellular defects. J Clin Endocrinol Metab. 1983 Oct;57(4):803–811. doi: 10.1210/jcem-57-4-803. [DOI] [PubMed] [Google Scholar]
  4. Beer S., Tieder M., Kohelet D., Liberman O. A., Vure E., Bar-Joseph G., Gabizon D., Borochowitz Z. U., Varon M., Modai D. Vitamin D resistant rickets with alopecia: a form of end organ resistance to 1,25 dihydroxy vitamin D. Clin Endocrinol (Oxf) 1981 Apr;14(4):395–402. doi: 10.1111/j.1365-2265.1981.tb00626.x. [DOI] [PubMed] [Google Scholar]
  5. Brooks M. H., Bell N. H., Love L., Stern P. H., Orfei E., Queener S. F., Hamstra A. J., DeLuca H. F. Vitamin-D-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med. 1978 May 4;298(18):996–999. doi: 10.1056/NEJM197805042981804. [DOI] [PubMed] [Google Scholar]
  6. Brumbaugh P. F., Haussler M. R. 1 Alpha,25-dihydroxycholecalciferol receptors in intestine. II. Temperature-dependent transfer of the hormone to chromatin via a specific cytosol receptor. J Biol Chem. 1974 Feb 25;249(4):1258–1262. [PubMed] [Google Scholar]
  7. Chandler J. S., Chandler S. K., Pike J. W., Haussler M. R. 1,25-Dihydroxyvitamin D3 induces 25-hydroxyvitamin D3-24-hydroxylase in a cultured monkey kidney cell line (LLC-MK2) apparently deficient in the high affinity receptor for the hormone. J Biol Chem. 1984 Feb 25;259(4):2214–2222. [PubMed] [Google Scholar]
  8. Chen T. L., Feldman D. Regulation of 1,25-dihydroxyvitamin D3 receptors in cultured mouse bone cells. Correlation of receptor concentration with the rate of cell division. J Biol Chem. 1981 Jun 10;256(11):5561–5566. [PubMed] [Google Scholar]
  9. Chen T. L., Hirst M. A., Cone C. M., Hochberg Z., Tietze H. U., Feldman D. 1,25-dihydroxyvitamin D resistance, rickets, and alopecia: analysis of receptors and bioresponse in cultured fibroblasts from patients and parents. J Clin Endocrinol Metab. 1984 Sep;59(3):383–388. doi: 10.1210/jcem-59-3-383. [DOI] [PubMed] [Google Scholar]
  10. Clemens T. L., Adams J. S., Horiuchi N., Gilchrest B. A., Cho H., Tsuchiya Y., Matsuo N., Suda T., Holick M. F. Interaction of 1,25-dihydroxyvitamin-D3 with keratinocytes and fibroblasts from skin of normal subjects and a subject with vitamin-D-dependent rickets, type II: a model for study of the mode of action of 1,25-dihydroxyvitamin D3. J Clin Endocrinol Metab. 1983 Apr;56(4):824–830. doi: 10.1210/jcem-56-4-824. [DOI] [PubMed] [Google Scholar]
  11. Colston K. W., Evans I. M., Spelsberg T. C., MacIntyre I. Feedback regulation of vitamin D metabolism by 1,25-dihydroxycholecalciferol. Biochem J. 1977 Apr 15;164(1):83–89. doi: 10.1042/bj1640083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Colston K., Feldman D. 1,25-Dihydroxyvitamin D3 receptors and functions in cultured pig kidney cells (LLC PK1). Regulation of 24,25-dihydroxyvitamin D3 production. J Biol Chem. 1982 Mar 10;257(5):2504–2508. [PubMed] [Google Scholar]
  13. Danan J. L., Delorme A. C., Mathieu H. Presence of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 24-hydroxylase in vitamin D target cells of rat yolk sac. J Biol Chem. 1982 Sep 25;257(18):10715–10721. [PubMed] [Google Scholar]
  14. Eil C., Liberman U. A., Rosen J. F., Marx S. J. A cellular defect in hereditary vitamin-D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med. 1981 Jun 25;304(26):1588–1591. doi: 10.1056/NEJM198106253042608. [DOI] [PubMed] [Google Scholar]
  15. Eil C., Marx S. J. Nuclear uptake of 1,25-dihydroxy[3H]cholecalciferol in dispersed fibroblasts cultured from normal human skin. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2562–2566. doi: 10.1073/pnas.78.4.2562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feldman D., Chen T., Cone C., Hirst M., Shani S., Benderli A., Hochberg Z. Vitamin D resistant rickets with alopecia: cultured skin fibroblasts exhibit defective cytoplasmic receptors and unresponsiveness to 1,25(OH)2D3. J Clin Endocrinol Metab. 1982 Nov;55(5):1020–1022. doi: 10.1210/jcem-55-5-1020. [DOI] [PubMed] [Google Scholar]
  17. Feldman D., Chen T., Hirst M., Colston K., Karasek M., Cone C. Demonstration of 1,25-dihydroxyvitamin D3 receptors in human skin biopsies. J Clin Endocrinol Metab. 1980 Dec;51(6):1463–1465. doi: 10.1210/jcem-51-6-1463. [DOI] [PubMed] [Google Scholar]
  18. Fraser D., Kooh S. W., Kind H. P., Holick M. F., Tanaka Y., DeLuca H. F. Pathogenesis of hereditary vitamin-D-dependent rickets. An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1 alpha,25-dihydroxyvitamin D. N Engl J Med. 1973 Oct 18;289(16):817–822. doi: 10.1056/NEJM197310182891601. [DOI] [PubMed] [Google Scholar]
  19. Fujita T., Nomura M., Okajima S., Furuya H. Adult-onset vitamin D-resistant osteomalacia with the unresponsiveness to parathyroid hormone. J Clin Endocrinol Metab. 1980 May;50(5):927–931. doi: 10.1210/jcem-50-5-927. [DOI] [PubMed] [Google Scholar]
  20. Griffin J. E., Zerwekh J. E. Impaired stimulation of 25-hydroxyvitamin D-24-hydroxylase in fibroblasts from a patient with vitamin D-dependent rickets, type II. A form of receptor-positive resistance to 1,25-dihydroxyvitamin D3. J Clin Invest. 1983 Oct;72(4):1190–1199. doi: 10.1172/JCI111074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grody W. W., Schrader W. T., O'Malley B. W. Activation, transformation, and subunit structure of steroid hormone receptors. Endocr Rev. 1982 Spring;3(2):141–163. doi: 10.1210/edrv-3-2-141. [DOI] [PubMed] [Google Scholar]
  22. Henry H. L. Regulation of the hydroxylation of 25-hydroxyvitamin D3 in vivo and in primary cultures of chick kidney cells. J Biol Chem. 1979 Apr 25;254(8):2722–2729. [PubMed] [Google Scholar]
  23. Hirst M., Feldman D. Regulation of 1,25(OH)2 vitamin D3 receptor content in cultured LLC-PK1 kidney cells limits hormonal responsiveness. Biochem Biophys Res Commun. 1983 Oct 14;116(1):121–127. doi: 10.1016/0006-291x(83)90389-3. [DOI] [PubMed] [Google Scholar]
  24. Howard G. A., Turner R. T., Sherrard D. J., Baylink D. J. Human bone cells in culture metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Biol Chem. 1981 Aug 10;256(15):7738–7740. [PubMed] [Google Scholar]
  25. Knutson J. C., DeLuca H. F. 25-Hydroxyvitamin D3-24-hydroxylase. Subcellular location and properties. Biochemistry. 1974 Mar 26;13(7):1543–1548. doi: 10.1021/bi00704a034. [DOI] [PubMed] [Google Scholar]
  26. Kudoh T., Kumagai T., Uetsuji N., Tsugawa S., Oyanagi K., Chiba Y., Minami R., Nakao T. Vitamin D dependent rickets: decreased sensitivity to 1,25-dihydroxyvitamin D. Eur J Pediatr. 1981 Nov;137(3):307–311. doi: 10.1007/BF00443263. [DOI] [PubMed] [Google Scholar]
  27. Kumar R., Schnoes H. K., DeLuca H. F. Rat intestinal 25-hydroxyvitamin D3- and 1alpha,25-dihydroxyvitamin D3-24-hydroxylase. J Biol Chem. 1978 Jun 10;253(11):3804–3809. [PubMed] [Google Scholar]
  28. Liberman U. A., Eil C., Holst P., Rosen J. F., Marx S. J. Hereditary resistance to 1,25-dihydroxyvitamin D: defective function of receptors for 1,25-dihydroxyvitamin D in cells cultured from bone. J Clin Endocrinol Metab. 1983 Nov;57(5):958–962. doi: 10.1210/jcem-57-5-958. [DOI] [PubMed] [Google Scholar]
  29. Liberman U. A., Eil C., Marx S. J. Resistance to 1,25-dihydroxyvitamin D. Association with heterogeneous defects in cultured skin fibroblasts. J Clin Invest. 1983 Feb;71(2):192–200. doi: 10.1172/JCI110759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Liberman U. A., Samuel R., Halabe A., Kauli R., Edelstein S., Weisman Y., Papapoulos S. E., Clemens T. L., Fraher L. J., O'Riordan J. L. End-organ resistance to 1,25-dihydroxycholecalciferol. Lancet. 1980 Mar 8;1(8167):504–506. doi: 10.1016/s0140-6736(80)92763-4. [DOI] [PubMed] [Google Scholar]
  31. Marx S. J., Liberman U. A., Eil C., Gamblin G. T., DeGrange D. A., Balsan S. Hereditary resistance to 1,25-dihydroxyvitamin D. Recent Prog Horm Res. 1984;40:589–620. doi: 10.1016/b978-0-12-571140-1.50019-0. [DOI] [PubMed] [Google Scholar]
  32. Marx S. J., Spiegel A. M., Brown E. M., Gardner D. G., Downs R. W., Jr, Attie M., Hamstra A. J., DeLuca H. F. A familial syndrome of decrease in sensitivity to 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 1978 Dec;47(6):1303–1310. doi: 10.1210/jcem-47-6-1303. [DOI] [PubMed] [Google Scholar]
  33. Omdahl J. L., Hunsaker L. A., Evan A. P., Torrez P. In vitro regulation of kidney 25-hydroxyvitamin D3-hydroxylase enzyme activities by vitamin D3 metabolites. Molecular specificity and mechanism of action. J Biol Chem. 1980 Aug 10;255(15):7460–7466. [PubMed] [Google Scholar]
  34. PRADER A., ILLIG R., HEIERLI E. [An unusual form of primary vitamin D-resistant rickets with hypocalcemia and autosomal-dominant hereditary transmission: hereditary pseudo-deficiency rickets]. Helv Paediatr Acta. 1961 Dec;16:452–468. [PubMed] [Google Scholar]
  35. Pike J. W., Dokoh S., Haussler M. R., Liberman U. A., Marx S. J., Eil C. Vitamin D3--resistant fibroblasts have immunoassayable 1,25-dihydroxyvitamin D3 receptors. Science. 1984 May 25;224(4651):879–881. doi: 10.1126/science.6326262. [DOI] [PubMed] [Google Scholar]
  36. Rosen J. F., Fleischman A. R., Finberg L., Hamstra A., DeLuca H. F. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatr. 1979 May;94(5):729–735. doi: 10.1016/s0022-3476(79)80139-0. [DOI] [PubMed] [Google Scholar]
  37. Simpson R. U., Franceschi R. T., DeLuca H. F. Characterization of a specific, high affinity binding macromolecule for 1 alpha, 25-dihydroxyvitamin D3 in cultured chick kidney cells. J Biol Chem. 1980 Nov 10;255(21):10160–10166. [PubMed] [Google Scholar]
  38. Sockalosky J. J., Ulstrom R. A., DeLuca H. F., Brown D. M. Vitamin D--resistant rickets: end-organ unresponsiveness to 1,25(OH)2D3. J Pediatr. 1980 Apr;96(4):701–703. doi: 10.1016/s0022-3476(80)80748-7. [DOI] [PubMed] [Google Scholar]
  39. Spanos E., Barrett D. I., Chong K. T., MacIntyre I. Effect of oestrogen and 1,25-dihydroxycholecalciferol on 25-hydroxycholecalciferol metabolism in primary chick kidney-cell cultures. Biochem J. 1978 Jul 15;174(1):231–236. doi: 10.1042/bj1740231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stumpf W. E., Sar M., Reid F. A., Tanaka Y., DeLuca H. F. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979 Dec 7;206(4423):1188–1190. doi: 10.1126/science.505004. [DOI] [PubMed] [Google Scholar]
  41. Tanaka Y., DeLuca H. F. Stimulation of 24,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3. Science. 1974 Mar;183(130):1198–1200. doi: 10.1126/science.183.4130.1198. [DOI] [PubMed] [Google Scholar]
  42. Trechsel U., Bonjour J. P., Fleisch H. Regulation of the metabolism of 25-hydroxyvitamin D3 in primary cultures of chick kidney cells. J Clin Invest. 1979 Jul;64(1):206–217. doi: 10.1172/JCI109441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tsuchiya Y., Matsuo N., Cho H., Kumagai M., Yasaka A., Suda T., Orimo H., Shiraki M. An unusual form of vitamin D-dependent rickets in a child: alopecia and marked end-organ hyposensitivity to biologically active vitamin D. J Clin Endocrinol Metab. 1980 Oct;51(4):685–690. doi: 10.1210/jcem-51-4-685. [DOI] [PubMed] [Google Scholar]
  44. Turner R. T., Puzas J. E., Forte M. D., Lester G. E., Gray T. K., Howard G. A., Baylink D. J. In vitro synthesis of 1 alpha,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol by isolated calvarial cells. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5720–5724. doi: 10.1073/pnas.77.10.5720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zerwekh J. E., Glass K., Jowsey J., Pak C. Y. An unique form of osteomalacia associated with end organ refractoriness to 1,25-dihydroxyvitamin D and apparent defective synthesis of 25-hydroxyvitamin D. J Clin Endocrinol Metab. 1979 Aug;49(2):171–175. doi: 10.1210/jcem-49-2-171. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES