Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Mar;75(3):961–969. doi: 10.1172/JCI111797

Long-term marrow culture of cells from patients with acute myelogenous leukemia. Selection in favor of normal phenotypes in some but not all cases.

L Coulombel, C Eaves, D Kalousek, C Gupta, A Eaves
PMCID: PMC423636  PMID: 3856572

Abstract

Long-term cultures were initiated with leukemic marrow aspirate cells from each of 13 newly diagnosed acute myelogenous leukemia (AML) patients. Initial assessment of the clonogenic potential of the marrow suggested that normal hemopoietic progenitors were reduced in most cases and progenitors of abnormal colonies and clusters were present in 10 cases. Subsequent assays of both nonadherent and adherent fractions of long-term cultures revealed two patterns of progenitor cell behavior. The most common pattern (nine cases) featured the detection after 1-4 wk of near normal numbers of typical erythroid, granulopoietic, and mixed colony-forming progenitor cells. Progenitors of abnormal (blast) colonies and clusters initially demonstrable in eight of these nine cases were, in these cases, not sustained in long-term culture and could not be found after 4 wk. Conversion to cytogenetic normalcy in long-term culture was confirmed in two experiments in this group. The second pattern (four cases) was characterized by the failure of progenitors capable of normal differentiation to become detectable in long-term cultures, and the concomitant maintenance of blast progenitors in the two cases in this group where such cells were initially demonstrable. Although progenitors capable of producing abnormal (blast) colonies or clusters in methylcellulose were not detected in either of the other two experiments, the maintenance for 6 wk of a hypercellular nonadherent blast population in one of these suggested the persisting activity of an "adherent layer-dependent" leukemic progenitor cell. Taken together, these findings indicate a strong correlation between the presence of leukemic blasts and their progenitors and a decreased level of normal hemopoiesis. In addition, the failure of leukemic cells to be maintained in long-term marrow cultures from some (but not all) AML patients suggests new applications of this methodology for studies of early stages of leukemic cell development.

Full text

PDF
961

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. M., Catovsky D., Daniel M. T., Flandrin G., Galton D. A., Gralnick H. R., Sultan C. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976 Aug;33(4):451–458. doi: 10.1111/j.1365-2141.1976.tb03563.x. [DOI] [PubMed] [Google Scholar]
  2. Cashman J., Henkelman D., Humphries K., Eaves C., Eaves A. Individual BFU-E in polycythemia vera produce both erythropoietin dependent and independent progeny. Blood. 1983 May;61(5):876–884. [PubMed] [Google Scholar]
  3. Chang L. J., Till J. E., McCulloch E. A. The cellular basis of self renewal in culture by human acute myeloblastic leukemia blast cell progenitors. J Cell Physiol. 1980 Feb;102(2):217–222. doi: 10.1002/jcp.1041020213. [DOI] [PubMed] [Google Scholar]
  4. Collins S., Groudine M. Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature. 1982 Aug 12;298(5875):679–681. doi: 10.1038/298679a0. [DOI] [PubMed] [Google Scholar]
  5. Coulombel L., Eaves A. C., Eaves C. J. Enzymatic treatment of long-term human marrow cultures reveals the preferential location of primitive hemopoietic progenitors in the adherent layer. Blood. 1983 Aug;62(2):291–297. [PubMed] [Google Scholar]
  6. Coulombel L., Kalousek D. K., Eaves C. J., Gupta C. M., Eaves A. C. Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N Engl J Med. 1983 Jun 23;308(25):1493–1498. doi: 10.1056/NEJM198306233082502. [DOI] [PubMed] [Google Scholar]
  7. Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
  8. Dubé I. D., Arlin Z. A., Kalousek D. K., Eaves C. J., Eaves A. C. Nonclonal hemopoietic progenitor cells detected in long-term marrow cultures from a Turner syndrome mosaic with chronic myeloid leukemia. Blood. 1984 Dec;64(6):1284–1287. [PubMed] [Google Scholar]
  9. Dubé I. D., Eaves C. J., Kalousek D. K., Eaves A. C. A method for obtaining high quality chromosome preparations from single hemopoietic colonies on a routine basis. Cancer Genet Cytogenet. 1981 Oct;4(2):157–168. doi: 10.1016/0165-4608(81)90080-7. [DOI] [PubMed] [Google Scholar]
  10. Dubé I. D., Kalousek D. K., Coulombel L., Gupta C. M., Eaves C. J., Eaves A. C. Cytogenetic studies of early myeloid progenitor compartments in Ph1-positive chronic myeloid leukemia. II. Long-term culture reveals the persistence of Ph1-negative progenitors in treated as well as newly diagnosed patients. Blood. 1984 May;63(5):1172–1177. [PubMed] [Google Scholar]
  11. Eaves C. J., Eaves A. C. Erythropoietin (Ep) dose-response curves for three classes of erythroid progenitors in normal human marrow and in patients with polycythemia vera. Blood. 1978 Dec;52(6):1196–1210. [PubMed] [Google Scholar]
  12. Eva A., Tronick S. R., Gol R. A., Pierce J. H., Aaronson S. A. Transforming genes of human hematopoietic tumors: frequent detection of ras-related oncogenes whose activation appears to be independent of tumor phenotype. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4926–4930. doi: 10.1073/pnas.80.16.4926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fialkow P. J. Cell lineages in hematopoietic neoplasia studied with glucose-6-phosphate dehydrogenase cell markers. J Cell Physiol Suppl. 1982;1:37–43. doi: 10.1002/jcp.1041130409. [DOI] [PubMed] [Google Scholar]
  14. Fibach E., Rachmilewitz E. A. Tumour promoters induce macrophage differentiation in human myeloid cells from patients with acute and chronic myelogenous leukaemia. Br J Haematol. 1981 Feb;47(2):203–210. doi: 10.1111/j.1365-2141.1981.tb02780.x. [DOI] [PubMed] [Google Scholar]
  15. Gartner S., Kaplan H. S. Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4756–4759. doi: 10.1073/pnas.77.8.4756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jacobson R. J., Temple M. J., Singer J. W., Raskind W., Powell J., Fialkow P. J. A clonal complete remission in a patient with acute nonlymphocytic leukemia originating in a multipotent stem cell. N Engl J Med. 1984 Jun 7;310(23):1513–1517. doi: 10.1056/NEJM198406073102307. [DOI] [PubMed] [Google Scholar]
  17. Keating A., Singer J. W., Killen P. D., Striker G. E., Salo A. C., Sanders J., Thomas E. D., Thorning D., Fialkow P. J. Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature. 1982 Jul 15;298(5871):280–283. doi: 10.1038/298280a0. [DOI] [PubMed] [Google Scholar]
  18. Kodama H. A., Amagai Y., Koyama H., Kasai S. A new preadipose cell line derived from newborn mouse calvaria can promote the proliferation of pluripotent hemopoietic stem cells in vitro. J Cell Physiol. 1982 Jul;112(1):89–95. doi: 10.1002/jcp.1041120114. [DOI] [PubMed] [Google Scholar]
  19. Krystal G., Eaves C. J., Eaves A. C. CM Affi-Gel Blue chromatography of human urine: a simple one-step procedure for obtaining erythropoietin suitable for in vitro erythropoietic progenitor assays. Br J Haematol. 1984 Nov;58(3):533–546. doi: 10.1111/j.1365-2141.1984.tb04001.x. [DOI] [PubMed] [Google Scholar]
  20. Mauch P., Greenberger J. S., Botnick L., Hannon E., Hellman S. Evidence for structured variation in self-renewal capacity within long-term bone marrow cultures. Proc Natl Acad Sci U S A. 1980 May;77(5):2927–2930. doi: 10.1073/pnas.77.5.2927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moore M. A., Williams N., Metcalf D. In vitro colony formation by normal and leukemic human hematopoietic cells: characterization of the colony-forming cells. J Natl Cancer Inst. 1973 Mar;50(3):603–623. doi: 10.1093/jnci/50.3.603. [DOI] [PubMed] [Google Scholar]
  22. Morris T. C., McNeill T. A., Bridges J. M. Inhibition of normal human in vitro colony forming cells by cells from leukaemic patients. Br J Cancer. 1975 Jun;31(6):641–648. doi: 10.1038/bjc.1975.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Park C. H., Savin M. A., Hoogstraten B., Amare M., Hathaway P. Improved growth of in vitro colonies in human acute leukemia with the feeding culture method. Cancer Res. 1977 Dec;37(12):4595–4601. [PubMed] [Google Scholar]
  24. Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971 Oct 30;2(7731):971–972. doi: 10.1016/s0140-6736(71)90287-x. [DOI] [PubMed] [Google Scholar]
  25. Smith L. J., Curtis J. E., Messner H. A., Senn J. S., Furthmayr H., McCulloch E. A. Lineage infidelity in acute leukemia. Blood. 1983 Jun;61(6):1138–1145. [PubMed] [Google Scholar]
  26. Spitzer G., Verma D. S., Beran M., Zander A. R., Dicke K. A., McCredie K. B., Siegel S., Tindle S. Human myeloid leukaemic cell interactions in vitro with normal myeloid colonies. Br J Cancer. 1981 Feb;43(2):149–156. doi: 10.1038/bjc.1981.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yunis J. J. The chromosomal basis of human neoplasia. Science. 1983 Jul 15;221(4607):227–236. doi: 10.1126/science.6336310. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES