Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Sep;78(3):743–747. doi: 10.1172/JCI112635

Inhibition of lactate removal by ketone bodies in rat liver. Evidence for a quantitatively important role of the plasma membrane lactate transporter in lactate metabolism.

H K Metcalfe, J P Monson, S G Welch, R D Cohen
PMCID: PMC423665  PMID: 3745435

Abstract

We studied the effect of DL-3-hydroxybutyrate and acetoacetate on lactate transport into isolated hepatocytes and on lactate removal in the isolated perfused rat liver. Ketone bodies inhibited lactate transport into isolated hepatocytes (maximum, 35% at concentrations of 10-20 mM). Lactate removal and glucose production by perfused livers were examined before and after the introduction of a constant infusion of hydroxybutyrate, acetoacetate, or appropriate control into the portal venous limb. Lactate removal was significantly inhibited within 10 s of the appearance of increasing concentrations of ketone bodies in the effluent. Corresponding decreases in glucose production were observed. The dependence of inhibition on D-3-hydroxybutyrate concentration was documented in isolated perfused livers (maximum inhibition of lactate removal, 58% at 14 mM). This phenomenon could be a factor in the development of lactic acidosis accompanying ketoacidosis, and indicates that plasma membrane lactate transport may determine the rate of hepatic lactate removal.

Full text

PDF
743

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen B. L., Tarpley H. T., Regen D. M. Characterization of beta-hydroxybutyrate transport in rat erythrocytes and thymocytes. Biochim Biophys Acta. 1978 Apr 20;508(3):525–538. doi: 10.1016/0005-2736(78)90097-4. [DOI] [PubMed] [Google Scholar]
  2. Arinze I. J., Garber A. J., Hanson R. W. The regulation of gluconeogenesis in mammalian liver. The role of mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1973 Apr 10;248(7):2266–2274. [PubMed] [Google Scholar]
  3. Blackshear P. J., Holloway P. A., Aberti K. G. The effects of inhibition of gluconeogenesis on ketogenesis in starved and diabetic rats. Biochem J. 1975 Jun;148(3):353–362. doi: 10.1042/bj1480353b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen R. D., Henderson R. M., Iles R. A., Monson J. P., Smith J. A. The techniques and uses of intracellular pH measurements. Ciba Found Symp. 1982;87:20–35. doi: 10.1002/9780470720691.ch2. [DOI] [PubMed] [Google Scholar]
  5. Cohen R. D., Iles R. A., Barnett D., Howell M. E., Strunin J. The effect of changes in lactate uptake on the intracellular pH of the perfused rat liver. Clin Sci. 1971 Aug;41(2):159–170. doi: 10.1042/cs0410159. [DOI] [PubMed] [Google Scholar]
  6. Cohen R. D., Woods H. F. Lactic acidosis revisited. Diabetes. 1983 Feb;32(2):181–191. doi: 10.2337/diab.32.2.181. [DOI] [PubMed] [Google Scholar]
  7. Exton J. H., Park C. R. Control of gluconeogenesis in liver. I. General features of gluconeogenesis in the perfused livers of rats. J Biol Chem. 1967 Jun 10;242(11):2622–2636. [PubMed] [Google Scholar]
  8. Fafournoux P., Demigné C., Rémésy C. Carrier-mediated uptake of lactate in rat hepatocytes. Effects of pH and possible mechanisms for L-lactate transport. J Biol Chem. 1985 Jan 10;260(1):292–299. [PubMed] [Google Scholar]
  9. Hanson R. W. The choice of animal species for studies of metabolic regulation. Nutr Rev. 1974 Jan;32(1):1–8. doi: 10.1111/j.1753-4887.1974.tb06248.x. [DOI] [PubMed] [Google Scholar]
  10. Monson J. P., Smith J. A., Cohen R. D., Iles R. A. Evidence for a lactate transporter in the plasma membrane of the rat hepatocyte. Clin Sci (Lond) 1982 Apr;62(4):411–420. doi: 10.1042/cs0620411. [DOI] [PubMed] [Google Scholar]
  11. Oldendorf W. H. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am J Physiol. 1973 Jun;224(6):1450–1453. doi: 10.1152/ajplegacy.1973.224.6.1450. [DOI] [PubMed] [Google Scholar]
  12. Patel T. B., Barron L. L., Olson M. S. The stimulation of hepatic gluconeogenesis by acetoacetate precursors. A role for the monocarboxylate translocator. J Biol Chem. 1984 Jun 25;259(12):7525–7531. [PubMed] [Google Scholar]
  13. Shaw J. H., Wolfe R. R. Glucose production in the perfused dog liver: effect of free fatty acids and ketones. J Surg Res. 1984 Dec;37(6):437–442. doi: 10.1016/0022-4804(84)90210-5. [DOI] [PubMed] [Google Scholar]
  14. Sies H., Noack G., Halder K. H. Carbon-dioxide concentration and the distribution of monocarboxylate and H+ ions between intracellular and extracellular spaces of hemoglobin-free perfused rat liver. Eur J Biochem. 1973 Oct 5;38(2):247–258. doi: 10.1111/j.1432-1033.1973.tb03056.x. [DOI] [PubMed] [Google Scholar]
  15. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Welch S. G., Metcalfe H. K., Monson J. P., Cohen R. D., Henderson R. M., Iles R. A. L(+)-Lactate binding to preparations of rat hepatocyte plasma membranes. J Biol Chem. 1984 Dec 25;259(24):15264–15271. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES