Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Jul;76(1):15–21. doi: 10.1172/JCI111939

Measurement of regional neuronal removal of norepinephrine in man.

D S Goldstein, R Zimlichman, R Stull, J Folio, P D Levinson, H R Keiser, I J Kopin
PMCID: PMC423694  PMID: 4019774

Abstract

We describe here and validate an in vivo technique to measure the regional proportionate removal of norepinephrine (NE) by neuronal uptake (Uptake1) in man. The measurement is based on the steady-state arterial and venous concentrations of tritiated NE and tritiated isoproterenol (ISO) during simultaneous infusion of both. The validity of this technique depends on the removal of circulating NE, but not of ISO, by sympathetic nerve endings and on there being no other factor contributing to the net difference in the plasma disappearance of these catecholamines. To test these hypotheses, we compared the removal of NE in the arm with that of ISO in 14 people and the effects of pretreatment with the specific inhibitor of Uptake1, desipramine, in 8 people. In all the subjects a greater percent of NE than of ISO was removed during passage of blood through the forearm (54 vs. 46%, P less than 0.0001). Pretreatment with desipramine decreased significantly the removal of NE to virtually exactly that of ISO. The difference in NE and ISO clearances by arm tissues was therefore completely accounted for by Uptake1. About 15% of infused NE which is removed in the arm is removed by Uptake1. The ability to measure regional Uptake1 should contribute to better understanding of the relationship between circulating levels of plasma NE and sympathetic neural activity and may allow detection of abnormalities of neuronal norepinephrine removal in clinical disease states.

Full text

PDF
15

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOUSVAROS G. A., PALMER W. H., SEKELJ P., McGREGOR M. Comparison of central and peripheral injection sites in the estimation of cardiac output by dye dilution curves. Circ Res. 1963 Mar;12:317–321. doi: 10.1161/01.res.12.3.317. [DOI] [PubMed] [Google Scholar]
  2. Blombery P. A., Heinzow B. G. Cardiac and pulmonary norepinephrine release and removal in the dog. Circ Res. 1983 Nov;53(5):688–694. doi: 10.1161/01.res.53.5.688. [DOI] [PubMed] [Google Scholar]
  3. Brown M. J., Jenner D. A., Allison D. J., Dollery C. T. Variations in individual organ release of noradrenaline measured by an improved radioenzymatic technique; limitations of peripheral venous measurements in the assessment of sympathetic nervous activity. Clin Sci (Lond) 1981 Nov;61(5):585–590. doi: 10.1042/cs0610585. [DOI] [PubMed] [Google Scholar]
  4. Bönisch H. Further studies on the extraneuronal uptake and metabolism of isoprenaline in the perfused rat heart. Naunyn Schmiedebergs Arch Pharmacol. 1978 Jun;303(2):121–131. doi: 10.1007/BF00508057. [DOI] [PubMed] [Google Scholar]
  5. Callingham B. A., Burgen A. S. The uptake of isoprenaline and noradrenaline by the perfused rat heart. Mol Pharmacol. 1966 Jan;2(1):37–42. [PubMed] [Google Scholar]
  6. Draskóczy P. R., Trendelenburg U. Intraneuronal and extraneuronal accumulation of sympathomimetic amines in the isolated nictitating membrane of the cat. J Pharmacol Exp Ther. 1970 Aug;174(2):290–306. [PubMed] [Google Scholar]
  7. Esler M., Jackman G., Leonard P., Skews H., Bobik A., Korner P. Effect of norepinephrine uptake blockers on norepinephrine kinetics. Clin Pharmacol Ther. 1981 Jan;29(1):12–20. doi: 10.1038/clpt.1981.3. [DOI] [PubMed] [Google Scholar]
  8. Esler M., Jennings G., Korner P., Blombery P., Burke F., Willett I., Leonard P. Total, and organ-specific, noradrenaline plasma kinetics in essential hypertension. Clin Exp Hypertens A. 1984;6(1-2):507–521. doi: 10.3109/10641968409062580. [DOI] [PubMed] [Google Scholar]
  9. Folkow B., Di Bona G. F., Hjemdahl P., Torén P. H., Wallin B. G. Measurements of plasma norepinephrine concentrations in human primary hypertension. A word of caution on their applicability for assessing neurogenic contributions. Hypertension. 1983 Jul-Aug;5(4):399–403. doi: 10.1161/01.hyp.5.4.399. [DOI] [PubMed] [Google Scholar]
  10. Goldstein D. S., Feuerstein G., Izzo J. L., Jr, Kopin I. J., Keiser H. R. Validity and reliability of liquid chromatography with electrochemical detection for measuring plasma levels of norepinephrine and epinephrine in man. Life Sci. 1981 Feb 2;28(5):467–475. doi: 10.1016/0024-3205(81)90139-9. [DOI] [PubMed] [Google Scholar]
  11. Goldstein D. S., Horwitz D., Keiser H. R., Polinsky R. J., Kopin I. J. Plasma l-[3H]norepinephrine, d-[14C]norepinephrine, and d,l-[3H]isoproterenol kinetics in essential hypertension. J Clin Invest. 1983 Nov;72(5):1748–1758. doi: 10.1172/JCI111134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldstein D. S., McCarty R., Polinsky R. J., Kopin I. J. Relationship between plasma norepinephrine and sympathetic neural activity. Hypertension. 1983 Jul-Aug;5(4):552–559. doi: 10.1161/01.hyp.5.4.552. [DOI] [PubMed] [Google Scholar]
  13. Gryglewski R., Vane J. R. The inactivation of noradrenaline and isoprenaline in dogs. Br J Pharmacol. 1970 Jul;39(3):573–584. doi: 10.1111/j.1476-5381.1970.tb10365.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HERTTING G. THE FATE OF 3H-ISO-PROTERENOL IN THE RAT. Biochem Pharmacol. 1964 Aug;13:1119–1128. doi: 10.1016/0006-2952(64)90112-1. [DOI] [PubMed] [Google Scholar]
  15. Hilsted J., Christensen N. J., Madsbad S. Whole body clearance of norepinephrine. The significance of arterial sampling and of surgical stress. J Clin Invest. 1983 Mar;71(3):500–505. doi: 10.1172/JCI110794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kopin I. J., Zukowska-Grojec Z., Bayorh M. A., Goldstein D. S. Estimation of intrasynaptic norepinephrine concentrations at vascular neuroeffector junctions in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1984 Apr;325(4):298–305. doi: 10.1007/BF00504372. [DOI] [PubMed] [Google Scholar]
  17. Linnoila M., Karoum F., Calil H. M., Kopin I. J., Potter W. Z. Alteration of norepinephrine metabolism with desipramine and zimelidine in depressed patients. Arch Gen Psychiatry. 1982 Sep;39(9):1025–1028. doi: 10.1001/archpsyc.1982.04290090027006. [DOI] [PubMed] [Google Scholar]
  18. Mörlin C., Wallin B. G., Eriksson B. M. Muscle sympathetic activity and plasma noradrenaline in normotensive and hypertensive man. Acta Physiol Scand. 1983;119(2):117–121. doi: 10.1111/j.1748-1716.1983.tb07315.x. [DOI] [PubMed] [Google Scholar]
  19. NEWMAN E. V., MERRELL M., GENECIN A., MONGE C., MILNOR W. R., McKEEVER W. P. The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation. 1951 Nov;4(5):735–746. doi: 10.1161/01.cir.4.5.735. [DOI] [PubMed] [Google Scholar]
  20. Saar N., Bachmann A. W., Jackson R. V., Gordon R. D. Different norepinephrine disappearance rate in venous and arterial plasma in man. Clin Exp Hypertens A. 1983;5(1):31–40. doi: 10.3109/10641968309048808. [DOI] [PubMed] [Google Scholar]
  21. Sole M. J., Drobac M., Schwartz L., Hussain M. N., Vaughan-Neil E. F. The extraction of circulating catecholamines by the lungs in normal man and in patients with pulmonary hypertension. Circulation. 1979 Jul;60(1):160–163. doi: 10.1161/01.cir.60.1.160. [DOI] [PubMed] [Google Scholar]
  22. Wallin B. G., Sundlöf G., Eriksson B. M., Dominiak P., Grobecker H., Lindblad L. E. Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol Scand. 1981 Jan;111(1):69–73. doi: 10.1111/j.1748-1716.1981.tb06706.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES