Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 14;92(6):1802–1806. doi: 10.1073/pnas.92.6.1802

Effects of increased neural activity on brain growth.

D Zheng 1, D Purves 1
PMCID: PMC42370  PMID: 7892181

Abstract

We have measured the effects of regionally increased metabolic activity--and by inference electrical activity--on cortical growth in the developing rat brain. Cortical growth is significantly and specifically greater in regions of chronically increased activity. This effect of activity on cortical growth may help explain the permanent storage of early experience in the developing nervous system.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asanuma C., Stanfield B. B. Induction of somatic sensory inputs to the lateral geniculate nucleus in congenitally blind mice and in phenotypically normal mice. Neuroscience. 1990;39(3):533–545. doi: 10.1016/0306-4522(90)90241-u. [DOI] [PubMed] [Google Scholar]
  2. Borowsky I. W., Collins R. C. Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities. J Comp Neurol. 1989 Oct 15;288(3):401–413. doi: 10.1002/cne.902880304. [DOI] [PubMed] [Google Scholar]
  3. Bronchti G., Schönenberger N., Welker E., Van der Loos H. Barrelfield expansion after neonatal eye removal in mice. Neuroreport. 1992 Jun;3(6):489–492. doi: 10.1097/00001756-199206000-00008. [DOI] [PubMed] [Google Scholar]
  4. Dawson D. R., Killackey H. P. The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat. J Comp Neurol. 1987 Feb 8;256(2):246–256. doi: 10.1002/cne.902560205. [DOI] [PubMed] [Google Scholar]
  5. Dekaban A. S. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978 Oct;4(4):345–356. doi: 10.1002/ana.410040410. [DOI] [PubMed] [Google Scholar]
  6. Gyllensten L., Malmfors T., Norrlin M. L. Growth alteration in the auditory cortex of visually deprived mice. J Comp Neurol. 1966 Mar;126(3):463–469. doi: 10.1002/cne.901260308. [DOI] [PubMed] [Google Scholar]
  7. Mata M., Fink D. J., Gainer H., Smith C. B., Davidsen L., Savaki H., Schwartz W. J., Sokoloff L. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem. 1980 Jan;34(1):213–215. doi: 10.1111/j.1471-4159.1980.tb04643.x. [DOI] [PubMed] [Google Scholar]
  8. Pomeroy S. L., LaMantia A. S., Purves D. Postnatal construction of neural circuitry in the mouse olfactory bulb. J Neurosci. 1990 Jun;10(6):1952–1966. doi: 10.1523/JNEUROSCI.10-06-01952.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Purves D., Riddle D. R., White L. E., Gutierrez-Ospina G. Neural activity and the development of the somatic sensory system. Curr Opin Neurobiol. 1994 Feb;4(1):120–123. doi: 10.1016/0959-4388(94)90041-8. [DOI] [PubMed] [Google Scholar]
  10. Rauschecker J. P., Tian B., Korte M., Egert U. Crossmodal changes in the somatosensory vibrissa/barrel system of visually deprived animals. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5063–5067. doi: 10.1073/pnas.89.11.5063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Riddle D. R., Gutierrez G., Zheng D., White L. E., Richards A., Purves D. Differential metabolic and electrical activity in the somatic sensory cortex of juvenile and adult rats. J Neurosci. 1993 Oct;13(10):4193–4213. doi: 10.1523/JNEUROSCI.13-10-04193.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Riddle D., Richards A., Zsuppan F., Purves D. Growth of the rat somatic sensory cortex and its constituent parts during postnatal development. J Neurosci. 1992 Sep;12(9):3509–3524. doi: 10.1523/JNEUROSCI.12-09-03509.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ryugo R., Ryugo D. K., Killackey H. P. Differential effect of enucleation on two populations of layer V pyramidal cells. Brain Res. 1975 May 9;88(3):554–559. doi: 10.1016/0006-8993(75)90670-8. [DOI] [PubMed] [Google Scholar]
  14. Sokoloff L. Relation between physiological function and energy metabolism in the central nervous system. J Neurochem. 1977 Jul;29(1):13–26. doi: 10.1111/j.1471-4159.1977.tb03919.x. [DOI] [PubMed] [Google Scholar]
  15. Toldi J., Farkas T., Völgyi B. Neonatal enucleation induces cross-modal changes in the barrel cortex of rat. A behavioural and electrophysiological study. Neurosci Lett. 1994 Feb 14;167(1-2):1–4. doi: 10.1016/0304-3940(94)91014-6. [DOI] [PubMed] [Google Scholar]
  16. Wallace M. N. Histochemical demonstration of sensory maps in the rat and mouse cerebral cortex. Brain Res. 1987 Aug 18;418(1):178–182. doi: 10.1016/0006-8993(87)90977-2. [DOI] [PubMed] [Google Scholar]
  17. White L. E., Lucas G., Richards A., Purves D. Cerebral asymmetry and handedness. Nature. 1994 Mar 17;368(6468):197–198. doi: 10.1038/368197a0. [DOI] [PubMed] [Google Scholar]
  18. Woolsey T. A., Van der Loos H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 1970 Jan 20;17(2):205–242. doi: 10.1016/0006-8993(70)90079-x. [DOI] [PubMed] [Google Scholar]
  19. Yarowsky P. J., Ingvar D. H. Symposium summary. Neuronal activity and energy metabolism. Fed Proc. 1981 Jul;40(9):2353–2362. [PubMed] [Google Scholar]
  20. Zheng D., LaMantia A. S., Purves D. Specialized vascularization of the primate visual cortex. J Neurosci. 1991 Aug;11(8):2622–2629. doi: 10.1523/JNEUROSCI.11-08-02622.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES