Abstract
Several factors interact to maintain precise control of electrolyte transport in the mammalian cortical collecting duct. We have studied the effects of deoxycorticosterone, arginine vasopressin, and bradykinin on net transepithelial sodium and potassium transport in isolated, perfused rat cortical collecting ducts. Chronic administration of deoxycorticosterone to rats increased both sodium absorption and potassium secretion above very low basal levels. Consequently, deoxycorticosterone-treated rats were used for all remaining studies. Arginine vasopressin (10(-10) M in the bath) caused a sustained fourfold increase in net sodium absorption and a sustained threefold increase in net potassium secretion. Bradykinin (10(-9) M in the bath) caused a reversible 40-50% inhibition of net sodium absorption without affecting net potassium transport or the transepithelial potential difference. In the perfusate, up to 10(-6) M bradykinin had no effect. We conclude: As in rabbits, chronic deoxycorticosterone administration to rats increases sodium absorption and potassium secretion in cortical collecting ducts perfused in vitro. Arginine vasopressin causes a reversible increase in net potassium secretion and net sodium absorption. Bradykinin in the peritubular bathing solution reversibly inhibits net sodium absorption, possibly by affecting an electroneutral sodium transport pathway.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alhenc-Gelas F., Marchetti J., Allegrini J., Corvol P., Menard J. Measurement of urinary kallikrein activity. Species differences in kinin production. Biochim Biophys Acta. 1981 Nov 5;677(3-4):477–488. doi: 10.1016/0304-4165(81)90262-2. [DOI] [PubMed] [Google Scholar]
- BARRACLOUGH M. A., MILLS I. H. EFFECT OF BRADYKININ ON RENAL FUNCTION. Clin Sci. 1965 Feb;28:69–74. [PubMed] [Google Scholar]
- Burg M. B., Green N. Function of the thick ascending limb of Henle's loop. Am J Physiol. 1973 Mar;224(3):659–668. doi: 10.1152/ajplegacy.1973.224.3.659. [DOI] [PubMed] [Google Scholar]
- Burg M. B. Perfusion of isolated renal tubules. Yale J Biol Med. 1972 Jun-Aug;45(3-4):321–326. [PMC free article] [PubMed] [Google Scholar]
- Cuthbert A. W., Margolius H. S. Kinins stimulate net chloride secretion by the rat colon. Br J Pharmacol. 1982 Apr;75(4):587–598. doi: 10.1111/j.1476-5381.1982.tb09178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elalouf J. M., Roinel N., de Rouffignac C. Effects of antidiuretic hormone on electrolyte reabsorption and secretion in distal tubules of rat kidney. Pflugers Arch. 1984 Jun;401(2):167–173. doi: 10.1007/BF00583877. [DOI] [PubMed] [Google Scholar]
- Field M. J., Stanton B. A., Giebisch G. H. Influence of ADH on renal potassium handling: a micropuncture and microperfusion study. Kidney Int. 1984 Mar;25(3):502–511. doi: 10.1038/ki.1984.46. [DOI] [PubMed] [Google Scholar]
- Figueroa C. D., Caorsi I., Subiabre J., Vío C. P. Immunoreactive kallikrein localization in the rat kidney: an immuno-electron-microscopic study. J Histochem Cytochem. 1984 Jan;32(1):117–121. doi: 10.1177/32.1.6558105. [DOI] [PubMed] [Google Scholar]
- Frindt G., Burg M. B. Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int. 1972 Apr;1(4):224–231. doi: 10.1038/ki.1972.32. [DOI] [PubMed] [Google Scholar]
- Gill J. R., Jr, Melmon K. L., Gillespie L., Jr, Bartter F. C. Bradykinin and renal function in normal man: effects of adrenergic blockade. Am J Physiol. 1965 Oct;209(4):844–848. doi: 10.1152/ajplegacy.1965.209.4.844. [DOI] [PubMed] [Google Scholar]
- Holt W. F., Lechene C. ADH-PGE2 interactions in cortical collecting tubule. I. Depression of sodium transport. Am J Physiol. 1981 Oct;241(4):F452–F460. doi: 10.1152/ajprenal.1981.241.4.F452. [DOI] [PubMed] [Google Scholar]
- Iino Y., Imai M. Effects of prostaglandins on Na transport in isolated collecting tubules. Pflugers Arch. 1978 Feb 22;373(2):125–132. doi: 10.1007/BF00584850. [DOI] [PubMed] [Google Scholar]
- Knepper M. A. Urea transport in isolated thick ascending limbs and collecting ducts from rats. Am J Physiol. 1983 Nov;245(5 Pt 1):F634–F639. doi: 10.1152/ajprenal.1983.245.5.F634. [DOI] [PubMed] [Google Scholar]
- LEAF A., BARTTER F. C., SANTOS R. F., WRONG O. Evidence in man that urinary electrolyte loss induced by pitressin is a function of water retention. J Clin Invest. 1953 Sep;32(9):868–878. doi: 10.1172/JCI102805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Musch M. W., Kachur J. F., Miller R. J., Field M., Stoff J. S. Bradykinin-stimulated electrolyte secretion in rabbit and guinea pig intestine. Involvement of arachidonic acid metabolites. J Clin Invest. 1983 May;71(5):1073–1083. doi: 10.1172/JCI110857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Neil R. G., Helman S. I. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am J Physiol. 1977 Dec;233(6):F544–F558. doi: 10.1152/ajprenal.1977.233.6.F544. [DOI] [PubMed] [Google Scholar]
- O'Neil R. G. Potassium secretion by the cortical collecting tubule. Fed Proc. 1981 Jul;40(9):2403–2407. [PubMed] [Google Scholar]
- Omata K., Carretero O. A., Scicli A. G., Jackson B. A. Localization of active and inactive kallikrein (kininogenase activity) in the microdissected rabbit nephron. Kidney Int. 1982 Dec;22(6):602–607. doi: 10.1038/ki.1982.218. [DOI] [PubMed] [Google Scholar]
- Orstabik T. B., Nustad K., Brandtzaeg P., Pierce J. V. Cellular origin of urinary kallikreins. J Histochem Cytochem. 1976 Sep;24(9):1037–1039. doi: 10.1177/24.9.965714. [DOI] [PubMed] [Google Scholar]
- Proud D., Knepper M. A., Pisano J. J. Distribution of immunoreactive kallikrein along the rat nephron. Am J Physiol. 1983 May;244(5):F510–F515. doi: 10.1152/ajprenal.1983.244.5.F510. [DOI] [PubMed] [Google Scholar]
- Proud D., Nakamura S., Carone F. A., Herring P. L., Kawamura M., Inagami T., Pisano J. J. Kallikrein-kinin and renin-angiotensin systems in rat renal lymph. Kidney Int. 1984 Jun;25(6):880–885. doi: 10.1038/ki.1984.105. [DOI] [PubMed] [Google Scholar]
- Proud D., Perkins M., Pierce J. V., Yates K. N., Highet P. F., Herring P. L., Mangkornkanok/Mark M., Bahu R., Carone F., Pisano J. J. Characterization and localization of human renal kininogen. J Biol Chem. 1981 Oct 25;256(20):10634–10639. [PubMed] [Google Scholar]
- RELMAN A. S., SCHWARTZ W. B. The effect of DOCA on electrolyte balance in normal man and its relation to sodium chloride intake. Yale J Biol Med. 1952 Jun;24(6):540–558. [PMC free article] [PubMed] [Google Scholar]
- Reif M. C., Troutman S. L., Schafer J. A. Sustained response to vasopressin in isolated rat cortical collecting tubule. Kidney Int. 1984 Nov;26(5):725–732. doi: 10.1038/ki.1984.208. [DOI] [PubMed] [Google Scholar]
- Schuster V. L., Kokko J. P., Jacobson H. R. Interactions of lysyl-bradykinin and antidiuretic hormone in the rabbit cortical collecting tubule. J Clin Invest. 1984 Jun;73(6):1659–1667. doi: 10.1172/JCI111372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz G. J., Burg M. B. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol. 1978 Dec;235(6):F576–F585. doi: 10.1152/ajprenal.1978.235.6.F576. [DOI] [PubMed] [Google Scholar]
- Stanton B. A., Biemesderfer D., Wade J. B., Giebisch G. Structural and functional study of the rat distal nephron: effects of potassium adaptation and depletion. Kidney Int. 1981 Jan;19(1):36–48. doi: 10.1038/ki.1981.5. [DOI] [PubMed] [Google Scholar]
- Stokes J. B., Kokko J. P. Inhibition of sodium transport by prostaglandin E2 across the isolated, perfused rabbit collecting tubule. J Clin Invest. 1977 Jun;59(6):1099–1104. doi: 10.1172/JCI108733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokes J. B. Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol. 1981 Oct;241(4):F395–F402. doi: 10.1152/ajprenal.1981.241.4.F395. [DOI] [PubMed] [Google Scholar]
- Tomita K., Endou H., Sakai F. Localization of kallikrein-like activity along a single nephron in rabbits. Pflugers Arch. 1981 Jan;389(2):91–95. doi: 10.1007/BF00582097. [DOI] [PubMed] [Google Scholar]
- Tomita K., Pisano J. J. Binding of [3H]bradykinin in isolated nephron segments of the rabbit. Am J Physiol. 1984 May;246(5 Pt 2):F732–F737. doi: 10.1152/ajprenal.1984.246.5.F732. [DOI] [PubMed] [Google Scholar]
- Tomita K., Shiigai T., Saito H., Iino Y., Takeuchi J. Increased urinary kallikrein-like activity during ADH-induced hyponatremia in rats. Hypertension. 1984 Jul-Aug;6(4):511–518. doi: 10.1161/01.hyp.6.4.511. [DOI] [PubMed] [Google Scholar]
- WEBSTER M. E., GILMORE J. P. INFLUENCE OF KALLIDIN-L0 ON RENAL FUNCTION. Am J Physiol. 1964 Apr;206:714–718. doi: 10.1152/ajplegacy.1964.206.4.714. [DOI] [PubMed] [Google Scholar]
- Willis L. R., Ludens J. H., Hook J. B., Williamson H. E. Mechanism of natriuretic action of bradykinin. Am J Physiol. 1969 Jul;217(1):1–5. doi: 10.1152/ajplegacy.1969.217.1.1. [DOI] [PubMed] [Google Scholar]
- Yamada K., Erdös E. G. Kallikrein and prekallikrein of the isolated basolateral membrane of rat kidney. Kidney Int. 1982 Oct;22(4):331–337. doi: 10.1038/ki.1982.177. [DOI] [PubMed] [Google Scholar]