Abstract
The megaloblastic anemia of cobalamin deficiency appears secondary to decreased methionine synthetase activity. Decreased activity of this enzyme should cause 5-methyltetrahydrofolate to accumulate intracellularly, and consequently, decrease purine and DNA synthesis; this is the basis of the "methylfolate trap" hypothesis of cobalamin deficiency. However, only some of the clinical and biochemical manifestations of cobalamin deficiency can be explained by the methylfolate trap. We investigated cobalamin deficiency by treating cultured human lymphoblasts with N2O since N2O inhibits methionine synthetase activity by inactivating cobalamin. We found that 4 h of N2O exposure reduced rates of methionine synthesis by 89%. Rates of purine synthesis were not significantly reduced by N2O when folate and methionine were present at 100 microM in the medium; however, at the physiologic methionine concentration of 10 microM, N2O decreased rates of purine synthesis by 33 and 57% in the presence of 100 microM folate and in the absence of folate, respectively. The dependency of rates of purine synthesis on methionine availability would be expected in cells with restricted methionine synthetic capacity because methionine is the immediate precursor of S-adenosylmethionine, a potent inhibitor of 5-methyltetrahydrofolate synthesis; methionine serves as a source of formate for purine synthesis; and rates of purine synthesis are dependent on the intracellular availability of essential amino acids. We conclude that cobalamin inactivation decreases purine synthesis by both methylfolate trapping and reduction of intracellular methionine synthesis.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amess J. A., Burman J. F., Rees G. M., Nancekievill D. G., Mollin D. L. Megaloblastic haemopoiesis in patients receiving nitrous oxide. Lancet. 1978 Aug 12;2(8085):339–342. doi: 10.1016/s0140-6736(78)92941-0. [DOI] [PubMed] [Google Scholar]
- Backlund P. S., Jr, Chang C. P., Smith R. A. Identification of 2-keto-4-methylthiobutyrate as an intermediate compound in methionine synthesis from 5'-methylthioadenosine. J Biol Chem. 1982 Apr 25;257(8):4196–4202. [PubMed] [Google Scholar]
- Boss G. R. Decreased phosphoribosylpyrophosphate as the basis for decreased purine synthesis during amino acid starvation of human lymphoblasts. J Biol Chem. 1984 Mar 10;259(5):2936–2941. [PubMed] [Google Scholar]
- Boss G. R., Erbe R. W. Decreased purine synthesis during amino acid starvation of human lymphoblasts. J Biol Chem. 1982 Apr 25;257(8):4242–4247. [PubMed] [Google Scholar]
- Boss G. R., Erbe R. W. Decreased rates of methionine synthesis by methylene tetrahydrofolate reductase-deficient fibroblasts and lymphoblasts. J Clin Invest. 1981 Jun;67(6):1659–1664. doi: 10.1172/JCI110202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boss G. R., Pilz R. B. Decreased methionine synthesis in purine nucleoside-treated T and B lymphoblasts and reversal by homocysteine. J Clin Invest. 1984 Oct;74(4):1262–1268. doi: 10.1172/JCI111536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deacon R., Chanarin I., Perry J., Lumb M. Impaired deoxyuridine utilization in the B12-inactivated rat and its correction by folate analogues. Biochem Biophys Res Commun. 1980 Mar 28;93(2):516–520. doi: 10.1016/0006-291x(80)91107-9. [DOI] [PubMed] [Google Scholar]
- Deacon R., Chanarin I., Perry J., Lumb M. Marrow cells from patients with untreated pernicious anaemia cannot use tetrahydrofolate normally. Br J Haematol. 1980 Dec;46(4):523–528. doi: 10.1111/j.1365-2141.1980.tb06008.x. [DOI] [PubMed] [Google Scholar]
- Erbe R. W. Genetic aspects of folate metabolism. Adv Hum Genet. 1979;9:293-354, 367-9. doi: 10.1007/978-1-4615-8276-2_5. [DOI] [PubMed] [Google Scholar]
- Finkelstein J. D., Martin J. J. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem. 1984 Aug 10;259(15):9508–9513. [PubMed] [Google Scholar]
- Frenkel E. P. Abnormal fatty acid metabolism in peripheral nerves of patients with pernicious anemia. J Clin Invest. 1973 May;52(5):1237–1245. doi: 10.1172/JCI107291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- German D. C., Bloch C. A., Kredich N. M. Measurements of S-adenosylmethionine and L-homocysteine metabolism in cultured human lymphoid cells. J Biol Chem. 1983 Sep 25;258(18):10997–11003. [PubMed] [Google Scholar]
- HERBERT V., SULLIVAN L. W. Formiminoglutamicaciduria in humans with megaloblastic anemia: diminution by methionine or glycine. Proc Soc Exp Biol Med. 1963 Feb;112:304–305. doi: 10.3181/00379727-112-28023. [DOI] [PubMed] [Google Scholar]
- Herbert V., Das K. C. The role of vitamin B12 and folic acid in hemato- and other cell-poiesis. Vitam Horm. 1976;34:1–30. doi: 10.1016/s0083-6729(08)60071-0. [DOI] [PubMed] [Google Scholar]
- Higginbottom M. C., Sweetman L., Nyhan W. L. A syndrome of methylmalonic aciduria, homocystinuria, megaloblastic anemia and neurologic abnormalities in a vitamin B12-deficient breast-fed infant of a strict vegetarian. N Engl J Med. 1978 Aug 17;299(7):317–323. doi: 10.1056/NEJM197808172990701. [DOI] [PubMed] [Google Scholar]
- Hollowell J. G., Jr, Hall W. K., Coryell M. E., McPherson J., Jr, Hahn D. A. Homocystinuria and organic aciduria in a patient with vitamin-B12 deficiency. Lancet. 1969 Dec 27;2(7635):1428–1428. doi: 10.1016/s0140-6736(69)90975-1. [DOI] [PubMed] [Google Scholar]
- Kondo H., Osborne M. L., Kolhouse J. F., Binder M. J., Podell E. R., Utley C. S., Abrams R. S., Allen R. H. Nitrous oxide has multiple deleterious effects on cobalamin metabolism and causes decreases in activities of both mammalian cobalamin-dependent enzymes in rats. J Clin Invest. 1981 May;67(5):1270–1283. doi: 10.1172/JCI110155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kutzbach C., Stokstad E. L. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine. Biochim Biophys Acta. 1971 Dec 15;250(3):459–477. doi: 10.1016/0005-2744(71)90247-6. [DOI] [PubMed] [Google Scholar]
- LASSEN H. C., HENRIKSEN E., NEUKIRCH F., KRISTENSEN H. S. Treatment of tetanus; severe bone-marrow depression after prolonged nitrous-oxide anaesthesia. Lancet. 1956 Apr 28;270(6922):527–530. doi: 10.1016/s0140-6736(56)90593-1. [DOI] [PubMed] [Google Scholar]
- Lombardini J. B., Talalay P. Formation, functions and regulatory importance of S-adenosyl-L-methionine. Adv Enzyme Regul. 1970;9:349–384. doi: 10.1016/s0065-2571(71)80054-7. [DOI] [PubMed] [Google Scholar]
- Lumb M., Deacon R., Perry J., Chanarin I., Minty B., Halsey M. J., Nunn J. F. The effect of nitrous oxide inactivation of vitamin B12 on rat hepatic folate. Implications for the methylfolate-trap hypothesis. Biochem J. 1980 Mar 15;186(3):933–936. doi: 10.1042/bj1860933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lumb M., Deacon R., Perry J., Chanarin I., Minty B., Halsey M. J., Nunn J. F. The effect of nitrous oxide inactivation of vitamin B12 on rat hepatic folate. Implications for the methylfolate-trap hypothesis. Biochem J. 1980 Mar 15;186(3):933–936. doi: 10.1042/bj1860933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lumb M., Perry J., Deacon R., Chanarin I. Changes in tissue folates accompanying nitrous oxide-induced inactivation of vitamin B12 in the rat. Am J Clin Nutr. 1981 Nov;34(11):2412–2417. doi: 10.1093/ajcn/34.11.2412. [DOI] [PubMed] [Google Scholar]
- MARSHALL R. A., JANDL J. H. Responses to "physiologic" doses of folic acid in the megaloblastic anemias. Arch Intern Med. 1960 Mar;105:352–360. doi: 10.1001/archinte.1960.00270150006002. [DOI] [PubMed] [Google Scholar]
- Nixon P. F., Bertino J. R. Interrelationships of vitamin B12 and folate in man. Am J Med. 1970 May;48(5):555–561. doi: 10.1016/0002-9343(70)90004-5. [DOI] [PubMed] [Google Scholar]
- Perry J., Chanarin I., Deacon R., Lumb M. Chronic cobalamin inactivation impairs folate polyglutamate synthesis in the rat. J Clin Invest. 1983 May;71(5):1183–1190. doi: 10.1172/JCI110867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry J., Chanarin I., Deacon R., Lumb M. The substrate for folate polyglutamate biosynthesis in the vitamin B12-inactivated rat. Biochem Biophys Res Commun. 1979 Nov 28;91(2):678–684. doi: 10.1016/0006-291x(79)91575-4. [DOI] [PubMed] [Google Scholar]
- Perry T. L., Hansen S., Love D. L., Crawford L. E., Tischler B. Treatment of homocystinuria with a low-methionine diet, supplemental cystine, and a methyl donor. Lancet. 1968 Aug 31;2(7566):474–478. doi: 10.1016/s0140-6736(68)90646-6. [DOI] [PubMed] [Google Scholar]
- Perry T. L., Hansen S., MacDougall L., Warrington P. D. Sulfur-containing amino acids in the plasma and urine of homocystinurics. Clin Chim Acta. 1967 Mar;15(3):409–420. doi: 10.1016/0009-8981(67)90005-8. [DOI] [PubMed] [Google Scholar]
- Pilz R. B., Willis R. C., Boss G. R. The influence of ribose 5-phosphate availability on purine synthesis of cultured human lymphoblasts and mitogen-stimulated lymphocytes. J Biol Chem. 1984 Mar 10;259(5):2927–2935. [PubMed] [Google Scholar]
- Rosenblatt D. S., Cooper B. A., Lue-Shing S., Wong P. W., Berlow S., Narisawa K., Baumgartner R. Folate distribution in cultured human cells. Studies on 5,10-CH2-H4PteGlu reductase deficiency. J Clin Invest. 1979 May;63(5):1019–1025. doi: 10.1172/JCI109370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenblatt D. S., Erbe R. W. Methylenetetrahydrofolate reductase in cultured human cells. I. Growtha and metabolic studies. Pediatr Res. 1977 Nov;11(11):1137–1141. doi: 10.1203/00006450-197711000-00004. [DOI] [PubMed] [Google Scholar]
- SIEKEVITZ P., GREENBERG D. M. The biological formation of formate from methyl compounds in liver slices. J Biol Chem. 1950 Sep;186(1):275–286. [PubMed] [Google Scholar]
- Schuh S., Rosenblatt D. S., Cooper B. A., Schroeder M. L., Bishop A. J., Seargeant L. E., Haworth J. C. Homocystinuria and megaloblastic anemia responsive to vitamin B12 therapy. An inborn error of metabolism due to a defect in cobalamin metabolism. N Engl J Med. 1984 Mar 15;310(11):686–690. doi: 10.1056/NEJM198403153101104. [DOI] [PubMed] [Google Scholar]
- Shipman R. T., Townley R. R., Danks D. M. Homocystinuria, addisonian pernicious anaemia, and partial deletion of a G chromosome. Lancet. 1969 Sep 27;2(7622):693–694. doi: 10.1016/s0140-6736(69)90401-2. [DOI] [PubMed] [Google Scholar]
- Taheri M. R., Wickremasinghe R. G., Jackson B. F., Hoffbrand A. V. The effect of folate analogues and vitamin B12 on provision of thymine nucleotides for DNA synthesis in megaloblastic anemia. Blood. 1982 Mar;59(3):634–640. [PubMed] [Google Scholar]
- WEISSBACH H., DICKERMAN H. BIOCHEMICAL ROLE OF VITAMIN B12. Physiol Rev. 1965 Jan;45:80–97. doi: 10.1152/physrev.1965.45.1.80. [DOI] [PubMed] [Google Scholar]
- Yoshida A. Hemolytic anemia and G6PD deficiency. Science. 1973 Feb 9;179(4073):532–537. doi: 10.1126/science.179.4073.532. [DOI] [PubMed] [Google Scholar]
