Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 14;92(6):1836–1840. doi: 10.1073/pnas.92.6.1836

Transposon-induced promoter scrambling: a mechanism for the evolution of new alleles.

B Kloeckener-Gruissem 1, M Freeling 1
PMCID: PMC42377  PMID: 7892187

Abstract

We have studied a germinal revertant of the Mutator (Mu3)-induced mutation (Adh1-3F1124) of the maize alcohol dehydrogenase 1 gene (adh1). Transposon Mu3 was inserted at the TATA box of the promoter. The excision of Mu3 caused a complex, multibreakpoint DNA rearrangement with deletion, inverted duplication, and inversions affecting 430 nucleotides in the promoter region. These changes led to an unusual pattern of adh1 gene expression: increased levels of enzyme activity in one organ, decreased levels in another, and almost unchanged levels in a third organ. The evolutionary impact of transposon-induced promoter scrambling on generation of allelic diversity is discussed. We present a fragmentation model to help explain how transposon excision could induce multiple breakpoint aberrations without involving a homologous chromosome.

Full text

PDF
1836

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britt A. B., Walbot V. Germinal and somatic products of Mu1 excision from the Bronze-1 gene of Zea mays. Mol Gen Genet. 1991 Jun;227(2):267–276. doi: 10.1007/BF00259680. [DOI] [PubMed] [Google Scholar]
  2. Chandler V. L., Hardeman K. J. The Mu elements of Zea mays. Adv Genet. 1992;30:77–122. doi: 10.1016/s0065-2660(08)60319-3. [DOI] [PubMed] [Google Scholar]
  3. Chen C. H., Oishi K. K., Kloeckener-Gruissem B., Freeling M. Organ-specific expression of maize Adh1 is altered after a Mu transposon insertion. Genetics. 1987 Jul;116(3):469–477. doi: 10.1093/genetics/116.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coen E. S., Carpenter R. A semi-dominant allele, niv-525, acts in trans to inhibit expression of its wild-type homologue in Antirrhinum majus. EMBO J. 1988 Apr;7(4):877–883. doi: 10.1002/j.1460-2075.1988.tb02891.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Damiani R. D., Jr, Wessler S. R. An upstream open reading frame represses expression of Lc, a member of the R/B family of maize transcriptional activators. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8244–8248. doi: 10.1073/pnas.90.17.8244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dawe R. K., Lachmansingh A. R., Freeling M. Transposon-mediated mutations in the untranslated leader of maize Adh1 that increase and decrease pollen-specific gene expression. Plant Cell. 1993 Mar;5(3):311–319. doi: 10.1105/tpc.5.3.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doseff A., Martienssen R., Sundaresan V. Somatic excision of the Mu1 transposable element of maize. Nucleic Acids Res. 1991 Feb 11;19(3):579–584. doi: 10.1093/nar/19.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Finnegan D. J. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989 Apr;5(4):103–107. doi: 10.1016/0168-9525(89)90039-5. [DOI] [PubMed] [Google Scholar]
  9. Gierl A., Saedler H. The En/Spm transposable element of Zea mays. Plant Mol Biol. 1989 Sep;13(3):261–266. doi: 10.1007/BF00025313. [DOI] [PubMed] [Google Scholar]
  10. Gordenin D. A., Lobachev K. S., Degtyareva N. P., Malkova A. L., Perkins E., Resnick M. A. Inverted DNA repeats: a source of eukaryotic genomic instability. Mol Cell Biol. 1993 Sep;13(9):5315–5322. doi: 10.1128/mcb.13.9.5315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gould S. J. Ontogeny and phylogeny--revisited and reunited. Bioessays. 1992 Apr;14(4):275–279. doi: 10.1002/bies.950140413. [DOI] [PubMed] [Google Scholar]
  12. Kloeckener-Gruissem B., Vogel J. M., Freeling M. The TATA box promoter region of maize Adh1 affects its organ-specific expression. EMBO J. 1992 Jan;11(1):157–166. doi: 10.1002/j.1460-2075.1992.tb05038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lister C., Jackson D., Martin C. Transposon-induced inversion in Antirrhinum modifies nivea gene expression to give a novel flower color pattern under the control of cycloidearadialis. Plant Cell. 1993 Nov;5(11):1541–1553. doi: 10.1105/tpc.5.11.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McClintock B. The significance of responses of the genome to challenge. Science. 1984 Nov 16;226(4676):792–801. doi: 10.1126/science.15739260. [DOI] [PubMed] [Google Scholar]
  15. Plasterk R. H. The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J. 1991 Jul;10(7):1919–1925. doi: 10.1002/j.1460-2075.1991.tb07718.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Raghuraman M. K., Brewer B. J., Fangman W. L. Activation of a yeast replication origin near a double-stranded DNA break. Genes Dev. 1994 Mar 1;8(5):554–562. doi: 10.1101/gad.8.5.554. [DOI] [PubMed] [Google Scholar]
  17. Sachs M. M., Freeling M., Okimoto R. The anaerobic proteins of maize. Cell. 1980 Jul;20(3):761–767. doi: 10.1016/0092-8674(80)90322-0. [DOI] [PubMed] [Google Scholar]
  18. Saedler H., Nevers P. Transposition in plants: a molecular model. EMBO J. 1985 Mar;4(3):585–590. doi: 10.1002/j.1460-2075.1985.tb03670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sandmeyer S. B., Hansen L. J., Chalker D. L. Integration specificity of retrotransposons and retroviruses. Annu Rev Genet. 1990;24:491–518. doi: 10.1146/annurev.ge.24.120190.002423. [DOI] [PubMed] [Google Scholar]
  20. Schneuwly S., Kuroiwa A., Gehring W. J. Molecular analysis of the dominant homeotic Antennapedia phenotype. EMBO J. 1987 Jan;6(1):201–206. doi: 10.1002/j.1460-2075.1987.tb04739.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Springer B., Werr W., Starlinger P., Bennett D. C., Zokolica M., Freeling M. The Shrunken gene on chromosome 9 of Zea mays L is expressed in various plant tissues and encodes an anaerobic protein. Mol Gen Genet. 1986 Dec;205(3):461–468. doi: 10.1007/BF00338083. [DOI] [PubMed] [Google Scholar]
  22. Stavenhagen J. B., Robins D. M. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell. 1988 Oct 21;55(2):247–254. doi: 10.1016/0092-8674(88)90047-5. [DOI] [PubMed] [Google Scholar]
  23. Walker J. C., Howard E. A., Dennis E. S., Peacock W. J. DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6624–6628. doi: 10.1073/pnas.84.19.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wessler S. R. Phenotypic diversity mediated by the maize transposable elements Ac and Spm. Science. 1988 Oct 21;242(4877):399–405. doi: 10.1126/science.2845581. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES