Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Jul;76(1):332–340. doi: 10.1172/JCI111966

Studies of the pathogenesis of angioimmunoblastic lymphadenopathy.

M Honda, H R Smith, A D Steinberg
PMCID: PMC423780  PMID: 3160728

Abstract

We studied the immune functions of two patients with angioimmunoblastic lymphadenopathy (AILD) in an attempt to determine whether the B cells were primarily hyperactive or, rather, if T cell abnormalities might underlie the B cell hyperactivity observed in these patients. We found that the B cells of the AILD patients did not proliferate spontaneously, nor were they induced to proliferate excessively by fresh normal T cells. In contrast, AILD T cells induced both autologous and allogeneic B cells to proliferate and to differentiate into Ig secreting cells. Spontaneous culture supernates of T cells obtained from each patient induced substantial proliferation of B cells (B cell-activating activity) as well as proliferation in a standard costimulatory assay (B cell growth factor activity). The culture supernate of a T cell line, which was established from one patient, showed both activities. The T cell line supernate also induced Ig production by staphylococcal A Cowan-activated B cells. None of these properties of AILD T cells was found among 10 normal controls. The addition of AILD T cells to autologous or allogeneic B cells in the presence of pokeweed mitogen (PWM) led to marked suppression of both proliferation and Ig production. This was true even in the presence of fresh normal T cells. Pretreatment studies showed that suppressor cells were induced by the interaction of AILD T cells with PWM-activated B cells. The present study suggests that the B cell hyperactivity observed in AILD patients might in part be due to excessive T cell effects on B cells. In addition, our results may help clarify the paradoxical impaired responsiveness to in vitro stimulation with PWM by active B cells from patients with autoimmune diseases.

Full text

PDF
332

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bankhurst A. D., Williams R. C., Jr Cellular origins of autoantibody--a preplexing question. Am J Med. 1976 Sep;61(3):303–307. doi: 10.1016/0002-9343(76)90364-8. [DOI] [PubMed] [Google Scholar]
  2. Barré-Sinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F., Rouzioux C. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983 May 20;220(4599):868–871. doi: 10.1126/science.6189183. [DOI] [PubMed] [Google Scholar]
  3. Blaese R. M., Grayson J., Steinberg A. D. Increased immunoglobulin-secreting cells in the blood of patients with active systemic lupus erythematosus. Am J Med. 1980 Sep;69(3):345–350. doi: 10.1016/0002-9343(80)90003-0. [DOI] [PubMed] [Google Scholar]
  4. Blattner W. A., Kalyanaraman V. S., Robert-Guroff M., Lister T. A., Galton D. A., Sarin P. S., Crawford M. H., Catovsky D., Greaves M., Gallo R. C. The human type-C retrovirus, HTLV, in Blacks from the Caribbean region, and relationship to adult T-cell leukemia/lymphoma. Int J Cancer. 1982 Sep 15;30(3):257–264. doi: 10.1002/ijc.2910300302. [DOI] [PubMed] [Google Scholar]
  5. Bluming A. Z., Cohen H. G., Saxon A. Angioimmunoblastic lymphadenopathy with dysproteinemia. A pathogenetic link between lymphoid proliferation and malignant lymphoma. Am J Med. 1979 Sep;67(3):421–428. doi: 10.1016/0002-9343(79)90788-5. [DOI] [PubMed] [Google Scholar]
  6. Budman D. R., Merchant E. B., Steinberg A. D., Doft B., Gershwin M. E., Lizzio E., Reeves J. P. Increased spontaneous activity of antibody-forming cells in the peripheral blood of patients with active SLE. Arthritis Rheum. 1977 Apr;20(3):829–833. doi: 10.1002/art.1780200312. [DOI] [PubMed] [Google Scholar]
  7. Calkins C. E. Interactions between primed and unprimed cells in the regulation of in vitro antibody responses. I. Role of "plasma cells" as inducers of suppression. Eur J Immunol. 1982 Jan;12(1):70–75. doi: 10.1002/eji.1830120113. [DOI] [PubMed] [Google Scholar]
  8. Castoldi G., Gualandi M., Scapoli G., Spanedda R., Anzanel D., Grusovin G. D., Cavazzini L. Chromosomal abnormalities in angio-immunoblastic lymphadenopathy. Ric Clin Lab. 1976 Apr-Jun;6(2):121–135. doi: 10.1007/BF02949082. [DOI] [PubMed] [Google Scholar]
  9. Clement L. T., Dagg M. K., Gartland G. L. Small, resting B cells can be induced to proliferate by direct signals from activated helper T cells. J Immunol. 1984 Feb;132(2):740–744. [PubMed] [Google Scholar]
  10. Cohen P. L., Litvin D. A., Winfield J. B. Association between endogenously activated T cells and immunoglobulin-secreting B cells in patients with active systemic lupus erythematosus. Arthritis Rheum. 1982 Feb;25(2):168–173. doi: 10.1002/art.1780250209. [DOI] [PubMed] [Google Scholar]
  11. Cullen M. H., Stansfeld A. G., Oliver R. T., Lister T. A., Malpas J. S. Angio-immunoblastic lymphadenopathy: report of ten cases and review of the literature. Q J Med. 1979 Jan;48(189):151–177. [PubMed] [Google Scholar]
  12. Datta S. K., Owen F. L., Womack J. E., Riblet R. J. Analysis of recombinant inbred lines derived from "autoimmune" (NZB) and "high leukemia" (C58) strains: independent multigenic systems control B cell hyperactivity, retrovirus expression, and autoimmunity. J Immunol. 1982 Oct;129(4):1539–1544. [PubMed] [Google Scholar]
  13. Ershler W. B., Moore A. L., Burns S. L., Tindle B. H. Immunoblastic lymphadenopathy: failure of, rather than lack of immunoregulation. J Med. 1983;14(2):81–94. [PubMed] [Google Scholar]
  14. FORSTER G., MOESCHLIN S. Extramedulläres, leukämisches Plasmocytom mit Dysproteinämie und erworbener hämolytischer Anämie. Schweiz Med Wochenschr. 1954 Sep 25;84(39):1106–1110. [PubMed] [Google Scholar]
  15. Frizzera G., Moran E. M., Rappaport H. Angio-immunoblastic lymphadenopathy with dysproteinaemia. Lancet. 1974 Jun 1;1(7866):1070–1073. doi: 10.1016/s0140-6736(74)90553-4. [DOI] [PubMed] [Google Scholar]
  16. Frizzera G., Moran E. M., Rappaport H. Angio-immunoblastic lymphadenopathy. Diagnosis and clinical course. Am J Med. 1975 Dec;59(6):803–818. doi: 10.1016/0002-9343(75)90466-0. [DOI] [PubMed] [Google Scholar]
  17. Gallo R. C., Sarin P. S., Gelmann E. P., Robert-Guroff M., Richardson E., Kalyanaraman V. S., Mann D., Sidhu G. D., Stahl R. E., Zolla-Pazner S. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science. 1983 May 20;220(4599):865–867. doi: 10.1126/science.6601823. [DOI] [PubMed] [Google Scholar]
  18. Gelmann E. P., Popovic M., Blayney D., Masur H., Sidhu G., Stahl R. E., Gallo R. C. Proviral DNA of a retrovirus, human T-cell leukemia virus, in two patients with AIDS. Science. 1983 May 20;220(4599):862–865. doi: 10.1126/science.6601822. [DOI] [PubMed] [Google Scholar]
  19. Ginsburg W. W., Finkelman F. D., Lipsky P. E. Circulating and pokeweed mitogen-induced immunoglobulin-secreting cells in systemic lupus erythematosus. Clin Exp Immunol. 1979 Jan;35(1):76–88. [PMC free article] [PubMed] [Google Scholar]
  20. Goh K. O., Bakemeier R. F. Is angioimmunoblastic lymphadenopathy with dysproteinemia a malignant disease? J Am Med Womens Assoc. 1978 Jan;33(1):38–40. [PubMed] [Google Scholar]
  21. Honda M., Sakane T., Steinberg A. D., Kotani H., Tsunematsu T., Moriyama K., Fukase M. Studies of immune functions of patients with systemic lupus erythematosus: antibodies to desialized, rather than intact, T cells preferentially bind to and eliminate suppressor effector T cells. J Clin Invest. 1982 Apr;69(4):940–949. doi: 10.1172/JCI110533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Honda M., Steinberg A. D. Effects of prostaglandin E2 on responses of T-cell subsets to mitogen and autologous non-T-cell stimulation. Clin Immunol Immunopathol. 1984 Oct;33(1):111–122. doi: 10.1016/0090-1229(84)90297-6. [DOI] [PubMed] [Google Scholar]
  23. Honda M., Steinberg A. D. Production and characterization of a unique monoclonal antibody against human B cells (33.2.1). Cell Immunol. 1985 Jun;93(1):105–123. doi: 10.1016/0008-8749(85)90392-2. [DOI] [PubMed] [Google Scholar]
  24. Hossfeld D. K., Höffken K., Schmidt C. G., Diedrichs H. Letter: Chromosome abnormalities in angioimmunoblastic lymphadenopathy. Lancet. 1976 Jan 24;1(7952):198–198. doi: 10.1016/s0140-6736(76)91308-8. [DOI] [PubMed] [Google Scholar]
  25. Jasin H. E., Ziff M. Immunoglobulin synthesis by peripheral blood cells in systemic lupus erythematosus. Arthritis Rheum. 1975 May-Jun;18(3):219–228. doi: 10.1002/art.1780180305. [DOI] [PubMed] [Google Scholar]
  26. Kaneko Y., Larson R. A., Variakojis D., Haren J. M., Rowley J. D. Nonrandom chromosome abnormalities in angioimmunoblastic lymphadenopathy. Blood. 1982 Oct;60(4):877–887. [PubMed] [Google Scholar]
  27. Kotani H., Takada S., Ueda Y., Murakawa Y., Suzuki N., Sakane T. Activation of immune regulatory circuits among OKT4+ cells by autologous mixed lymphocyte reactions. Clin Exp Immunol. 1984 May;56(2):390–398. [PMC free article] [PubMed] [Google Scholar]
  28. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  29. Leung D. Y., Chu E. T., Wood N., Grady S., Meade R., Geha R. S. Immunoregulatory T cell abnormalities in mucocutaneous lymph node syndrome. J Immunol. 1983 May;130(5):2002–2004. [PubMed] [Google Scholar]
  30. Ligler F. S., Patel M., Strayer D., Brodsky I., Bonner H., Linna T. J. Extremely high levels of natural killer cells in angioimmunoblastic lymphadenopathy. J Clin Immunol. 1983 Oct;3(4):375–381. doi: 10.1007/BF00915799. [DOI] [PubMed] [Google Scholar]
  31. Lukes R. J., Tindle B. H. Immunoblastic lymphadenopathy. A hyperimmune entity resembling Hodgkin's disease. N Engl J Med. 1975 Jan 2;292(1):1–8. doi: 10.1056/NEJM197501022920101. [DOI] [PubMed] [Google Scholar]
  32. Mountz J. D., Steinberg A. D., Klinman D. M., Smith H. R., Mushinski J. F. Autoimmunity and increased c-myb transcription. Science. 1984 Nov 30;226(4678):1087–1089. doi: 10.1126/science.6494925. [DOI] [PubMed] [Google Scholar]
  33. Paulutke M., Khilanani P., Weise R. Immunologic and electronmicroscopic characteristics of a case of immunoblastic lymphadenopathy. Am J Clin Pathol. 1976 Jun;65(6):929–941. doi: 10.1093/ajcp/65.6.929. [DOI] [PubMed] [Google Scholar]
  34. Poiesz B. J., Ruscetti F. W., Reitz M. S., Kalyanaraman V. S., Gallo R. C. Isolation of a new type C retrovirus (HTLV) in primary uncultured cells of a patient with Sézary T-cell leukaemia. Nature. 1981 Nov 19;294(5838):268–271. doi: 10.1038/294268a0. [DOI] [PubMed] [Google Scholar]
  35. Popa G., Nastase V., Hanganu E. Angioimmunoblastic lymphadenopathy associated with systemic lupus erythematosus. Folia Haematol Int Mag Klin Morphol Blutforsch. 1982;109(3):430–434. [PubMed] [Google Scholar]
  36. Prud'Homme G. J., Park C. L., Fieser T. M., Kofler R., Dixon F. J., Theofilopoulos A. N. Identification of a B cell differentiation factor(s) spontaneously produced by proliferating T cells in murine lupus strains of the lpr/lpr genotype. J Exp Med. 1983 Feb 1;157(2):730–742. doi: 10.1084/jem.157.2.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rice L., Abramson S. L., Laughter A. H., Wheeler T. M., Twomey J. J. Angioimmunoblastic lymphadenopathy with hypogammaglobulinemia. Possible role of monocyte suppression. Am J Med. 1982 Jun;72(6):998–1004. doi: 10.1016/0002-9343(82)90862-2. [DOI] [PubMed] [Google Scholar]
  38. Robert-Guroff M., Nakao Y., Notake K., Ito Y., Sliski A., Gallo R. C. Natural antibodies to human retrovirus HTLV in a cluster of Japanese patients with adult T cell leukemia. Science. 1982 Feb 19;215(4535):975–978. doi: 10.1126/science.6760397. [DOI] [PubMed] [Google Scholar]
  39. Robinson J. E., Brown N., Andiman W., Halliday K., Francke U., Robert M. F., Andersson-Anvret M., Horstmann D., Miller G. Diffuse polyclonal B-cell lymphoma during primary infection with Epstein-Barr virus. N Engl J Med. 1980 Jun 5;302(23):1293–1297. doi: 10.1056/NEJM198006053022306. [DOI] [PubMed] [Google Scholar]
  40. Rosenwasser L. J., Dinarello C. A. Ability of human leukocytic pyrogen to enhance phytohemagglutinin induced murine thymocyte proliferation. Cell Immunol. 1981 Sep 1;63(1):134–142. doi: 10.1016/0008-8749(81)90034-4. [DOI] [PubMed] [Google Scholar]
  41. Roths J. B., Murphy E. D., Eicher E. M. A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice. J Exp Med. 1984 Jan 1;159(1):1–20. doi: 10.1084/jem.159.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rubinstein A., Dauber L. G. Lymphoma of cytotoxic/suppressor T cell phenotype (T8) following angioimmunoblastic lymphadenopathy. Oncology. 1983;40(3):195–199. doi: 10.1159/000225724. [DOI] [PubMed] [Google Scholar]
  43. Sarin P. S., Aoki T., Shibata A., Ohnishi Y., Aoyagi Y., Miyakoshi H., Emura I., Kalyanaraman V. S., Robert-Guroff M., Popovic M. High incidence of human type-C retrovirus (HTLV) in family members of a HTLV-positive Japanese T-cell leukemia patient. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2370–2374. doi: 10.1073/pnas.80.8.2370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Starke I. D., Elkon K. B., Harmer C. L., Hughes G. R., Wiltshaw E. Pulmonary involvement in angioimmunoblastic lymphadenopathy following autoimmune disease. Respiration. 1983;44(2):136–142. doi: 10.1159/000194539. [DOI] [PubMed] [Google Scholar]
  45. Steinberg E. B., Santoro T. J., Chused T. M., Smathers P. A., Steinberg A. D. Studies of congenic MRL-Ipr/Ipr.xid mice. J Immunol. 1983 Dec;131(6):2789–2795. [PubMed] [Google Scholar]
  46. Stensvold K., Brandtzaeg P., Kvaløy S., Seip M., Lie S. O. Immunoblastic lymphadenopathy with early onset in two boys: immunohistochemical study and indication of decreased proportion of circulating T-helper cells. Br J Haematol. 1984 Mar;56(3):417–430. doi: 10.1111/j.1365-2141.1984.tb03972.x. [DOI] [PubMed] [Google Scholar]
  47. Thomas Y., Rogozinski L., Irigoyen O. H., Friedman S. M., Kung P. C., Goldstein G., Chess L. Functional analysis of human T cell subsets defined by monoclonal antibodies. IV. Induction of suppressor cells within the OKT4+ population. J Exp Med. 1981 Aug 1;154(2):459–467. doi: 10.1084/jem.154.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tosato G., Magrath I., Koski I., Dooley N., Blaese M. Activation of suppressor T cells during Epstein-Barr-virus-induced infectious mononucleosis. N Engl J Med. 1979 Nov 22;301(21):1133–1137. doi: 10.1056/NEJM197911223012101. [DOI] [PubMed] [Google Scholar]
  49. Watson J., Gillis S., Marbrook J., Mochizuki D., Smith K. A. Biochemical and biological characterization of lymphocyte regulatory molecules. I. Purification of a class of murine lymphokines. J Exp Med. 1979 Oct 1;150(4):849–861. doi: 10.1084/jem.150.4.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wilson D. A., Braley-Mullen H. Immunoregulation in MRL/Mp-lpr/lpr mice: evidence for decreased helper-T-cell and increased suppressor-T-cell function with age. Cell Immunol. 1982 Nov 15;74(1):72–85. doi: 10.1016/0008-8749(82)90007-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES