Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Jul;76(1):370–373. doi: 10.1172/JCI111971

Evidence for alteration of the vitamin D-endocrine system in obese subjects.

N H Bell, S Epstein, A Greene, J Shary, M J Oexmann, S Shaw
PMCID: PMC423785  PMID: 2991340

Abstract

Serum immunoreactive parathyroid hormone (PTH) is increased in obese as compared with nonobese subjects and declines with weight loss. To determine whether alteration of the vitamin D-endocrine system occurs in obesity and whether ensuing secondary hyperparathyroidism is associated with a reduction in urinary calcium, a study was performed in 12 obese white individuals, five men and seven women, and 14 nonobese white subjects, eight men and six women, ranging in age from 20 to 35 yr. Body weight averaged 106 +/- 6 kg in the obese and 68 +/- 2 kg in the nonobese subjects (P less than 0.01). Each of them were hospitalized on a metabolic ward and were given a constant daily diet containing 400 mg of calcium and 900 mg of phosphorus. Whereas mean serum calcium, serum ionized calcium, and serum phosphorus were the same in the two groups, mean serum immunoreactive PTH (518 +/- 48 vs. 243 +/- 33 pg/ml, P less than 0.001), mean serum 1,25-dihydroxyvitamin D [1,25(OH)2D] (37 +/- 2 vs. 29 +/- 2, P less than 0.01), and mean serum Gla protein (33 +/- 2 vs. 24 +/- 2 ng/ml, P less than 0.02) were significantly higher, and mean serum 25-hydroxyvitamin D (25-OHD) (8 +/- 1 vs. 20 +/- 2 ng/ml, P less than 0.001) was significantly lower in the obese than in the nonobese men and women. Mean urinary phosphorus was the same in the two groups, whereas mean urinary calcium (115 +/- 10 vs. 166 +/- 13 mg/d, P less than 0.01) was significantly lower, and mean urinary cyclic AMP (3.18 +/- 0.43 vs. 1.84 +/- 0.25 nM/dl GF, P less than 0.01) and creatinine clearance (216 +/- 13 vs. 173 +/- 6 liter/d, P less than 0.01) were significantly higher in the obese than in the nonobese individuals. There was a significant positive correlation between percentage of ideal body weight and urinary cyclic AMP (r = 0.524, P less than 0.01) and between percentage of ideal body weight and serum immunoreactive PTH (r = 0.717, P less than 0.01) in the two groups. The results provide evidence that alteration of the vitamin D-endocrine system in obese subjects is characterized by secondary hyperparathyroidism which is associated with enhanced renal tubular reabsorption of calcium and increased circulating 1,25(OH)2D. The reduction of serum 25-OHD in them is attributed to feedback inhibition of hepatic synthesis of the precursor by the increased serum 1,25(OH)2D.

Full text

PDF
370

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baginski E. S., Marie S. S., Clark W. L., Zak B. Direct microdetermination of serum calcium. Clin Chim Acta. 1973 Jun 14;46(1):49–54. doi: 10.1016/0009-8981(73)90101-0. [DOI] [PubMed] [Google Scholar]
  2. Bartels H., Böhmer M. Eine Mikromethode zur Kreatininbestimmung. Clin Chim Acta. 1971 Mar;32(1):81–85. doi: 10.1016/0009-8981(71)90467-0. [DOI] [PubMed] [Google Scholar]
  3. Bell N. H., Shaw S., Turner R. T. Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. J Clin Invest. 1984 Oct;74(4):1540–1544. doi: 10.1172/JCI111568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broadus A. E., Mahaffey J. E., Bartter F. C., Neer R. M. Nephrogenous cyclic adenosine monophosphate as a parathyroid function test. J Clin Invest. 1977 Oct;60(4):771–783. doi: 10.1172/JCI108831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clemens T. L., Adams J. S., Henderson S. L., Holick M. F. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982 Jan 9;1(8263):74–76. doi: 10.1016/s0140-6736(82)90214-8. [DOI] [PubMed] [Google Scholar]
  6. Cohn S. H., Abesamis C., Yasumura S., Aloia J. F., Zanzi I., Ellis K. J. Comparative skeletal mass and radial bone mineral content in black and white women. Metabolism. 1977 Feb;26(2):171–178. doi: 10.1016/0026-0495(77)90052-x. [DOI] [PubMed] [Google Scholar]
  7. Dalén N., Hallberg D., Lamke B. Bone mass in obese subjects. Acta Med Scand. 1975 May;197(5):353–355. doi: 10.1111/j.0954-6820.1975.tb04933.x. [DOI] [PubMed] [Google Scholar]
  8. Dorantes L. M., Arnaud S. B., Arnaud C. D. Importance of the isolation of 25-hydroxyvitamin D before assay. J Lab Clin Med. 1978 May;91(5):791–796. [PubMed] [Google Scholar]
  9. Epstein S., Poser J., McClintock R., Johnston C. C., Jr, Bryce G., Hui S. Differences in serum bone GLA protein with age and sex. Lancet. 1984 Feb 11;1(8372):307–310. doi: 10.1016/s0140-6736(84)90360-x. [DOI] [PubMed] [Google Scholar]
  10. Frumar A. M., Meldrum D. R., Geola F., Shamonki I. M., Tataryn I. V., Deftos L. J., Judd H. L. Relationship of fasting urinary calcium to circulating estrogen and body weight in postmenopausal women. J Clin Endocrinol Metab. 1980 Jan;50(1):70–75. doi: 10.1210/jcem-50-1-70. [DOI] [PubMed] [Google Scholar]
  11. Garn S. M., Clark D. C. Nutrition, growth, development, and maturation: findings from the ten-state nutrition survey of 1968-1970. Pediatrics. 1975 Aug;56(2):306–319. [PubMed] [Google Scholar]
  12. Garn S. M., Clark D. C., Trowbridge F. L. Tendency toward greater stature in American black children. Am J Dis Child. 1973 Aug;126(2):164–166. doi: 10.1001/archpedi.1973.02110190144006. [DOI] [PubMed] [Google Scholar]
  13. Garn S. M., Sandusky S. T., Nagy J. M., McCann M. B. Advanced skeletal development in low-income Negro children. J Pediatr. 1972 Jun;80(6):965–969. doi: 10.1016/s0022-3476(72)80008-8. [DOI] [PubMed] [Google Scholar]
  14. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Owen G. M., Lubin A. H. Anthropometric differences between black and white preschool children. Am J Dis Child. 1973 Aug;126(2):168–169. doi: 10.1001/archpedi.1973.02110190148007. [DOI] [PubMed] [Google Scholar]
  16. Price P. A., Parthemore J. G., Deftos L. J. New biochemical marker for bone metabolism. Measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J Clin Invest. 1980 Nov;66(5):878–883. doi: 10.1172/JCI109954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reinhardt T. A., Horst R. L., Orf J. W., Hollis B. W. A microassay for 1,25-dihydroxyvitamin D not requiring high performance liquid chromatography: application to clinical studies. J Clin Endocrinol Metab. 1984 Jan;58(1):91–98. doi: 10.1210/jcem-58-1-91. [DOI] [PubMed] [Google Scholar]
  18. Rickers H., Christiansen C., Balslev I., Rødbro P. Impairment of vitamin D metabolism and bone mineral content after intestinal bypass for obesity. A longitudinal study. Scand J Gastroenterol. 1984 Mar;19(2):184–189. [PubMed] [Google Scholar]
  19. TROTTER M., BROMAN G. E., PETERSON R. R. Densites of bones of white and Negro skeletons. J Bone Joint Surg Am. 1960 Jan;42-A:50–58. [PubMed] [Google Scholar]
  20. Teitelbaum S. L., Halverson J. D., Bates M., Wise L., Haddad J. G. Abnormalities of circulating 25-OH vitamin D after jejunal-lleal bypass for obesity: evidence of an adaptive response. Ann Intern Med. 1977 Mar;86(3):289–293. doi: 10.7326/0003-4819-86-3-289. [DOI] [PubMed] [Google Scholar]
  21. Wiske P. S., Epstein S., Bell N. H., Queener S. F., Edmondson J., Johnston C. C., Jr Increases in immunoreactive parathyroid hormone with age. N Engl J Med. 1979 Jun 21;300(25):1419–1421. doi: 10.1056/NEJM197906213002506. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES