Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Jul;76(1):378–380. doi: 10.1172/JCI111973

Posttranslational cleavage of proinsulin is blocked by a point mutation in familial hyperproinsulinemia.

Y Shibasaki, T Kawakami, Y Kanazawa, Y Akanuma, F Takaku
PMCID: PMC423787  PMID: 4019786

Abstract

Familial hyperproinsulinemia is characterized by the accumulation of proinsulin-like material (PLM) in the plasma of affected patients. This disorder is inherited in an autosomal dominant fashion. The accumulation of PLM is thought to be due to the impaired conversion of proinsulin to insulin. Although PLM has been suggested to have an amino acid substitution, it has been impossible to locate and identify a substituted amino acid, due to the difficulty in isolating sufficient amounts of PLM from plasma samples. Therefore, we analyzed leukocyte DNA from one member of a proinsulinemic family, and we found a point mutation that changed guanine to adenine in the insulin gene. This transition implies that a substitution of histidine for arginine has occurred at amino acid position 65. Furthermore, it indicates that arginine at 65 is essential for the conversion of proinsulin to insulin. Our results suggest a novel mechanism by which disease can be incurred: a heritable disorder can result from a posttranslational processing abnormality caused by a point mutation.

Full text

PDF
378

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdo Y., Rousseaux J., Dautrevaux M. Proalbumin Lille, a new variant of human serum albumin. FEBS Lett. 1981 Aug 31;131(2):286–288. doi: 10.1016/0014-5793(81)80386-9. [DOI] [PubMed] [Google Scholar]
  2. Bell G. I., Karam J. H., Rutter W. J. Polymorphic DNA region adjacent to the 5' end of the human insulin gene. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5759–5763. doi: 10.1073/pnas.78.9.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell G. I., Pictet R. L., Rutter W. J., Cordell B., Tischer E., Goodman H. M. Sequence of the human insulin gene. Nature. 1980 Mar 6;284(5751):26–32. doi: 10.1038/284026a0. [DOI] [PubMed] [Google Scholar]
  4. Bell G. I., Santerre R. F., Mullenbach G. T. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature. 1983 Apr 21;302(5910):716–718. doi: 10.1038/302716a0. [DOI] [PubMed] [Google Scholar]
  5. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  6. Blattner F. R., Blechl A. E., Denniston-Thompson K., Faber H. E., Richards J. E., Slightom J. L., Tucker P. W., Smithies O. Cloning human fetal gamma globin and mouse alpha-type globin DNA: preparation and screening of shotgun collections. Science. 1978 Dec 22;202(4374):1279–1284. doi: 10.1126/science.725603. [DOI] [PubMed] [Google Scholar]
  7. Brennan S. O., Carrell R. W. A circulating variant of human proalbumin. Nature. 1978 Aug 31;274(5674):908–909. doi: 10.1038/274908a0. [DOI] [PubMed] [Google Scholar]
  8. Docherty K., Carroll R. J., Steiner D. F. Conversion of proinsulin to insulin: involvement of a 31,500 molecular weight thiol protease. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4613–4617. doi: 10.1073/pnas.79.15.4613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Docherty K., Steiner D. F. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  10. Gabbay K. H., Bergenstal R. M., Wolff J., Mako M. E., Rubenstein A. H. Familial hyperproinsulinemia: partial characterization of circulating proinsulin-like material. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2881–2885. doi: 10.1073/pnas.76.6.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gabbay K. H., DeLuca K., Fisher J. N., Jr, Mako M. E., Rubenstein A. H. Familial hyperproinsulinemia. An autosomal dominant defect. N Engl J Med. 1976 Apr 22;294(17):911–915. doi: 10.1056/NEJM197604222941701. [DOI] [PubMed] [Google Scholar]
  12. Gruppuso P. A., Gorden P., Kahn C. R., Cornblath M., Zeller W. P., Schwartz R. Familial hyperproinsulinemia due to a proposed defect in conversion of proinsulin to insulin. N Engl J Med. 1984 Sep 6;311(10):629–634. doi: 10.1056/NEJM198409063111003. [DOI] [PubMed] [Google Scholar]
  13. Haneda M., Chan S. J., Kwok S. C., Rubenstein A. H., Steiner D. F. Studies on mutant human insulin genes: identification and sequence analysis of a gene encoding [SerB24]insulin. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6366–6370. doi: 10.1073/pnas.80.20.6366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kidd V. J., Wallace R. B., Itakura K., Woo S. L. alpha 1-antitrypsin deficiency detection by direct analysis of the mutation in the gene. Nature. 1983 Jul 21;304(5923):230–234. doi: 10.1038/304230a0. [DOI] [PubMed] [Google Scholar]
  15. Kwok S. C., Steiner D. F., Rubenstein A. H., Tager H. S. Identification of a point mutation in the human insulin gene giving rise to a structurally abnormal insulin (insulin Chicago). Diabetes. 1983 Sep;32(9):872–875. doi: 10.2337/diab.32.9.872. [DOI] [PubMed] [Google Scholar]
  16. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  17. Messing J., Crea R., Seeburg P. H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robbins D. C., Blix P. M., Rubenstein A. H., Kanazawa Y., Kosaka K., Tager H. S. A human proinsulin variant at arginine 65. Nature. 1981 Jun 25;291(5817):679–681. doi: 10.1038/291679a0. [DOI] [PubMed] [Google Scholar]
  19. Robbins D. C., Shoelson S. E., Rubenstein A. H., Tager H. S. Familial hyperproinsulinemia. Two cohorts secreting indistinguishable type II intermediates of proinsulin conversion. J Clin Invest. 1984 Mar;73(3):714–719. doi: 10.1172/JCI111264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  21. Shoelson S., Haneda M., Blix P., Nanjo A., Sanke T., Inouye K., Steiner D., Rubenstein A., Tager H. Three mutant insulins in man. Nature. 1983 Apr 7;302(5908):540–543. doi: 10.1038/302540a0. [DOI] [PubMed] [Google Scholar]
  22. Smithies O., Blechl A. E., Denniston-Thompson K., Newell N., Richards J. E., Slightom J. L., Tucker P. W., Blattner F. R. Cloning human fetal gamma globin and mouse alpha-type globin DNA: characterization and partial sequencing. Science. 1978 Dec 22;202(4374):1284–1289. doi: 10.1126/science.725604. [DOI] [PubMed] [Google Scholar]
  23. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  24. Tager H. S. Lilly lecture 1983. Abnormal products of the human insulin gene. Diabetes. 1984 Jul;33(7):693–699. doi: 10.2337/diab.33.7.693. [DOI] [PubMed] [Google Scholar]
  25. Ullrich A., Dull T. J., Gray A., Brosius J., Sures I. Genetic variation in the human insulin gene. Science. 1980 Aug 1;209(4456):612–615. doi: 10.1126/science.6248962. [DOI] [PubMed] [Google Scholar]
  26. Yu S. S., Kitbachi A. E. Biological activity of proinsulin and related polypeptides in the fat tissue. J Biol Chem. 1973 Jun 10;248(11):3753–3761. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES