Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Nov;78(5):1161–1164. doi: 10.1172/JCI112697

Parvalbumin is reduced in the peripheral nerves of diabetic rats.

T Endo, T Onaya
PMCID: PMC423799  PMID: 3771787

Abstract

Parvalbumin (PA), one of the Ca2+-binding neuronal marker proteins, has been revealed to exist in the myelinated axons of the posterior root of the spinal cord and the peripheral nerve of rats. To investigate the role of PA for the genesis of diabetic neuropathy, the levels of PA in the sciatic nerve of normal and streptozotocin-induced diabetic rats were measured by radioimmunoassay (RIA) for PA. The immunohistochemical distribution of PA in the sciatic nerve from both groups was also studied. The RIA for PA revealed that the levels of PA in the sciatic nerve of diabetic rats were significantly decreased when compared with those of normal rats. However, the contents of S-100 protein, another type of Ca2+-binding glial marker protein, did not show any significant difference in the sciatic nerve from both groups. Immunohistochemically, the amount of PA containing myelinated axons of the diabetic nerve was markedly decreased when compared with nondiabetic subjects. These results suggest that the decreased level of PA in the peripheral nerve might contribute to the genesis of diabetic neuropathy.

Full text

PDF
1161

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Celio M. R., Heizmann C. W. Calcium-binding protein parvalbumin as a neuronal marker. Nature. 1981 Sep 24;293(5830):300–302. doi: 10.1038/293300a0. [DOI] [PubMed] [Google Scholar]
  2. Clements R. S., Jr Diabetic neuropathy--new concepts of its etiology. Diabetes. 1979 Jun;28(6):604–611. doi: 10.2337/diab.28.6.604. [DOI] [PubMed] [Google Scholar]
  3. Endo T., Hidaka H. Effect of S-100 protein on microtubule assembly-disassembly. FEBS Lett. 1983 Sep 19;161(2):235–238. doi: 10.1016/0014-5793(83)81015-1. [DOI] [PubMed] [Google Scholar]
  4. Endo T., Kobayashi M., Kobayashi S., Onaya T. Immunocytochemical and biochemical localization of parvalbumin in the retina. Cell Tissue Res. 1986;243(1):213–217. doi: 10.1007/BF00221870. [DOI] [PubMed] [Google Scholar]
  5. Endo T., Takazawa K., Kobayashi S., Onaya T. Immunochemical and immunohistochemical localization of parvalbumin in rat nervous tissues. J Neurochem. 1986 Mar;46(3):892–898. doi: 10.1111/j.1471-4159.1986.tb13055.x. [DOI] [PubMed] [Google Scholar]
  6. Endo T., Takazawa K., Onaya T. Parvalbumin exists in rat endocrine glands. Endocrinology. 1985 Aug;117(2):527–531. doi: 10.1210/endo-117-2-527. [DOI] [PubMed] [Google Scholar]
  7. Endo T., Tanaka T., Isobe T., Kasai H., Okuyama T., Hidaka H. Calcium-dependent affinity chromatography of S-100 and calmodulin on calmodulin antagonist-coupled Sepharose. J Biol Chem. 1981 Dec 10;256(23):12485–12489. [PubMed] [Google Scholar]
  8. Haglid K. G., Hansson H. A., Rönnbäck L. S-100 in the central nervous system of rat, rabbit and guinea pig during postnatal development. Brain Res. 1977 Mar 11;123(2):331–345. doi: 10.1016/0006-8993(77)90484-x. [DOI] [PubMed] [Google Scholar]
  9. Hara K., Ito M., Takeuchi J., Iijima S., Endo T., Hidaka H. Distribution of S-100b protein in normal salivary glands and salivary gland tumors. Virchows Arch A Pathol Anat Histopathol. 1983;401(2):237–249. doi: 10.1007/BF00692648. [DOI] [PubMed] [Google Scholar]
  10. Heizmann C. W., Berchtold M. W., Rowlerson A. M. Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7243–7247. doi: 10.1073/pnas.79.23.7243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hidaka H., Endo T., Kato K. Assay of S-100 protein by an enzyme immunoassay method. Methods Enzymol. 1983;102:256–261. doi: 10.1016/s0076-6879(83)02026-1. [DOI] [PubMed] [Google Scholar]
  12. Jakobsen J., Sidenius P. Decreased axonal flux of retrogradely transported glycoproteins in early experimental diabetes. J Neurochem. 1979 Nov;33(5):1055–1060. doi: 10.1111/j.1471-4159.1979.tb05241.x. [DOI] [PubMed] [Google Scholar]
  13. Matus A., Mughal S. Immunohistochemical localisation of S-100 protein in brain. Nature. 1975 Dec 25;258(5537):746–748. doi: 10.1038/258746a0. [DOI] [PubMed] [Google Scholar]
  14. Meiri K. F., McLean W. G. Axonal transport of protein in motor fibres of experimentally diabetic rats--fast anterograde transport. Brain Res. 1982 Apr 22;238(1):77–88. doi: 10.1016/0006-8993(82)90772-7. [DOI] [PubMed] [Google Scholar]
  15. Stefansson K., Wollmann R. L., Moore B. W. Distribution of S-100 protein outside the central nervous system. Brain Res. 1982 Feb 25;234(2):309–317. doi: 10.1016/0006-8993(82)90871-x. [DOI] [PubMed] [Google Scholar]
  16. Tomlinson D. R. Axonal transport of noradrenaline, protein and glycoprotein in cat hypogastric nerves in vitro under conditions of high extracellular glucose. Diabetologia. 1983 Mar;24(3):172–178. doi: 10.1007/BF00250157. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES