Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Nov;78(5):1185–1192. doi: 10.1172/JCI112701

Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle.

E Marban, S W Robinson, W G Wier
PMCID: PMC423803  PMID: 3771791

Abstract

Drug-induced triggered arrhythmias in heart muscle involve oscillations of membrane potential known as delayed or early afterdepolarizations (DADs or EADs). We examined the mechanism of DADs and EADs in ferret ventricular muscle. Membrane potential, tension and aequorin luminescence were measured during exposure to elevated [Ca2+]0, strophanthidin and/or isoproterenol (to induce DADs), or cesium chloride (to induce EADs). Ryanodine (10(-9)-10(-6) M), an inhibitor of Ca2+ release from the sarcoplasmic reticulum, rapidly suppressed DADs and triggered arrhythmias. When cytoplasmic Ca2+-buffering capacity was enhanced by loading cells with the Ca2+ chelators BAPTA or quin2, DADs were similarly inhibited, as were contractile force and aequorin luminescence. In contrast to DADs, EADs induced by Cs were not suppressed by ryanodine or by loading with intracellular Ca2+ chelators. The possibility that transsarcolemmal Ca2+ entry might produce EADs was evaluated with highly specific dihydropyridine Ca channel agonists and antagonists. Bay K8644 (100-300 nM) potentiated EADs, whereas nitrendipine (3-20 microM) abolished EADs. We conclude that DADs and DAD-related triggered arrhythmias are activated by an increase in intracellular free Ca2+ concentration, whereas EADs do not require elevated [Ca2+]i but rather arise as a direct consequence of Ca2+ entry through sarcolemmal slow Ca channels.

Full text

PDF
1185

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson R. S., Cranefield P. F., Wit A. L. The effects of caffeine and ryanodine on the electrical activity of the canine coronary sinus. J Physiol. 1985 Nov;368:593–610. doi: 10.1113/jphysiol.1985.sp015878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean B. P., Cohen C. J., Tsien R. W. Lidocaine block of cardiac sodium channels. J Gen Physiol. 1983 May;81(5):613–642. doi: 10.1085/jgp.81.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
  4. Brachmann J., Scherlag B. J., Rosenshtraukh L. V., Lazzara R. Bradycardia-dependent triggered activity: relevance to drug-induced multiform ventricular tachycardia. Circulation. 1983 Oct;68(4):846–856. doi: 10.1161/01.cir.68.4.846. [DOI] [PubMed] [Google Scholar]
  5. Capogrossi M. C., Lakatta E. G. Frequency modulation and synchronization of spontaneous oscillations in cardiac cells. Am J Physiol. 1985 Mar;248(3 Pt 2):H412–H418. doi: 10.1152/ajpheart.1985.248.3.H412. [DOI] [PubMed] [Google Scholar]
  6. Colquhoun D., Neher E., Reuter H., Stevens C. F. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature. 1981 Dec 24;294(5843):752–754. doi: 10.1038/294752a0. [DOI] [PubMed] [Google Scholar]
  7. Coulombe A., Coraboeuf E., Deroubaix E. Computer simulation of acidosis-induced abnormal repolarization and repetitive activity in dog Purkinje fibers. J Physiol (Paris) 1980;76(2):107–112. [PubMed] [Google Scholar]
  8. Damiano B. P., Rosen M. R. Effects of pacing on triggered activity induced by early afterdepolarizations. Circulation. 1984 May;69(5):1013–1025. doi: 10.1161/01.cir.69.5.1013. [DOI] [PubMed] [Google Scholar]
  9. Ferrier G. R., Moe G. K. Effect of calcium on acetylstrophanthidin-induced transient depolarizations in canine Purkinje tissue. Circ Res. 1973 Nov;33(5):508–515. doi: 10.1161/01.res.33.5.508. [DOI] [PubMed] [Google Scholar]
  10. Gavrilescu S., Luca C. Right ventricular monophasic action potentials in patients with long QT syndrome. Br Heart J. 1978 Sep;40(9):1014–1018. doi: 10.1136/hrt.40.9.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffman B. F., Rosen M. R. Cellular mechanisms for cardiac arrhythmias. Circ Res. 1981 Jul;49(1):1–15. doi: 10.1161/01.res.49.1.1. [DOI] [PubMed] [Google Scholar]
  12. Imanishi S., Surawicz B. Automatic activity in depolarized guinea pig ventricular myocardium. Characteristics and mechanisms. Circ Res. 1976 Dec;39(6):751–759. doi: 10.1161/01.res.39.6.751. [DOI] [PubMed] [Google Scholar]
  13. Isenberg G. Ca entry and contraction as studied in isolated bovine ventricular myocytes. Z Naturforsch C. 1982 May-Jun;37(5-6):502–512. doi: 10.1515/znc-1982-5-623. [DOI] [PubMed] [Google Scholar]
  14. Josephson I. R., Sanchez-Chapula J., Brown A. M. A comparison of calcium currents in rat and guinea pig single ventricular cells. Circ Res. 1984 Feb;54(2):144–156. doi: 10.1161/01.res.54.2.144. [DOI] [PubMed] [Google Scholar]
  15. Karagueuzian H. S., Katzung B. G. Voltage-clamp studies of transient inward current and mechanical oscillations induced by ouabain in ferret papillary muscle. J Physiol. 1982 Jun;327:255–271. doi: 10.1113/jphysiol.1982.sp014230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kass R. S., Lederer W. J., Tsien R. W., Weingart R. Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres. J Physiol. 1978 Aug;281:187–208. doi: 10.1113/jphysiol.1978.sp012416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katzung B. G. Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea pig papillary muscle. Circ Res. 1975 Jul;37(1):118–127. doi: 10.1161/01.res.37.1.118. [DOI] [PubMed] [Google Scholar]
  18. Kort A. A., Lakatta E. G., Marban E., Stern M. D., Wier W. G. Fluctuations in intracellular calcium concentration and their effect on tonic tension in canine cardiac Purkinje fibres. J Physiol. 1985 Oct;367:291–308. doi: 10.1113/jphysiol.1985.sp015825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee K. S., Marban E., Tsien R. W. Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol. 1985 Jul;364:395–411. doi: 10.1113/jphysiol.1985.sp015752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levine J. H., Spear J. F., Guarnieri T., Weisfeldt M. L., de Langen C. D., Becker L. C., Moore E. N. Cesium chloride-induced long QT syndrome: demonstration of afterdepolarizations and triggered activity in vivo. Circulation. 1985 Nov;72(5):1092–1103. doi: 10.1161/01.cir.72.5.1092. [DOI] [PubMed] [Google Scholar]
  21. Marban E., Tsien R. W. Effects of nystatin-mediated intracellular ion substitution on membrane currents in calf purkinje fibres. J Physiol. 1982 Aug;329:569–587. doi: 10.1113/jphysiol.1982.sp014320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marban E., Tsien R. W. Enhancement of calcium current during digitalis inotropy in mammalian heart: positive feed-back regulation by intracellular calcium? J Physiol. 1982 Aug;329:589–614. doi: 10.1113/jphysiol.1982.sp014321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marchese A. C., Hill J. A., Jr, Xie P. D., Strauss H. C. Electrophysiologic effects of amiloride in canine Purkinje fibers: evidence for a delayed effect on repolarization. J Pharmacol Exp Ther. 1985 Feb;232(2):485–491. [PubMed] [Google Scholar]
  24. McAllister R. E., Noble D., Tsien R. W. Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol. 1975 Sep;251(1):1–59. doi: 10.1113/jphysiol.1975.sp011080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mitchell M. R., Powell T., Terrar D. A., Twist V. W. Ryanodine prolongs Ca-currents while suppressing contraction in rat ventricular muscle cells. Br J Pharmacol. 1984 Jan;81(1):13–15. doi: 10.1111/j.1476-5381.1984.tb10735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moak J. P., Rosen M. R. Induction and termination of triggered activity by pacing in isolated canine Purkinje fibers. Circulation. 1984 Jan;69(1):149–162. doi: 10.1161/01.cir.69.1.149. [DOI] [PubMed] [Google Scholar]
  27. Roden D. M., Hoffman B. F. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers. Relationship to potassium and cycle length. Circ Res. 1985 Jun;56(6):857–867. doi: 10.1161/01.res.56.6.857. [DOI] [PubMed] [Google Scholar]
  28. Rosen M. R., Danilo P., Jr Effects of tetrodotoxin, lidocaine, verapamil, and AHR-2666 on Ouabain-induced delayed afterdepolarizations in canine Purkinje fibers. Circ Res. 1980 Jan;46(1):117–124. doi: 10.1161/01.res.46.1.117. [DOI] [PubMed] [Google Scholar]
  29. Sutko J. L., Kenyon J. L. Ryanodine modification of cardiac muscle responses to potassium-free solutions. Evidence for inhibition of sarcoplasmic reticulum calcium release. J Gen Physiol. 1983 Sep;82(3):385–404. doi: 10.1085/jgp.82.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sutko J. L., Willerson J. T., Templeton G. H., Jones L. R., Besch H. R., Jr Ryanodine: its alterations of cat papillary muscle contractile state and responsiveness to inotropic interventions and a suggested mechanism of action. J Pharmacol Exp Ther. 1979 Apr;209(1):37–47. [PubMed] [Google Scholar]
  31. Tsien R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature. 1981 Apr 9;290(5806):527–528. doi: 10.1038/290527a0. [DOI] [PubMed] [Google Scholar]
  32. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  33. Valdeolmillos M., Eisner D. A. The effects of ryanodine on calcium-overloaded sheep cardiac Purkinje fibers. Circ Res. 1985 Mar;56(3):452–456. doi: 10.1161/01.res.56.3.452. [DOI] [PubMed] [Google Scholar]
  34. Wier W. G., Hess P. Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction. J Gen Physiol. 1984 Mar;83(3):395–415. doi: 10.1085/jgp.83.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wier W. G., Kort A. A., Stern M. D., Lakatta E. G., Marban E. Cellular calcium fluctuations in mammalian heart: direct evidence from noise analysis of aequorin signals in Purkinje fibers. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7367–7371. doi: 10.1073/pnas.80.23.7367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wier W. G., Yue D. T., Marban E. Effects of ryanodine on intracellular Ca2+ transients in mammalian cardiac muscle. Fed Proc. 1985 Dec;44(15):2989–2993. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES