Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Aug;76(2):431–438. doi: 10.1172/JCI111990

Phorbol diesters stimulate the development of an early murine progenitor cell. The burst-forming unit-megakaryocyte.

M W Long, L L Gragowski, C H Heffner, L A Boxer
PMCID: PMC423833  PMID: 3875629

Abstract

When murine (C57BL/6) bone marrow cells are cultivated with WEHI-3 conditioned media, a source of megakaryocyte-colony-stimulating activity (Mk-CSA), and phorbol myristate acetate (PMA), a previously undetected population of megakaryocyte (Mk) progenitor cells is observed. These new Mk colonies are reminiscent of erythroid bursts, in that they contain large numbers (40-500) of Mk and multiple foci (2-7) of development. These burst-forming units, Mk (BFU-Mk), are defined as having greater than or equal to 42 cells/colony and, at least, three foci of Mk development (colonies grown in soft agar cultures, all studies done at limiting dilutions; colonies detected by acetylcholinesterase [ACh-E] staining). CFU-Mk and BFU-Mk require two activities for optimal growth: Mk-CSA and PMA. However, the BFU-Mk require a tenfold greater concentration of PMA for optimal development (10(-6) vs. 10(-7) M). BFU-Mk detection is linear (over a range of 25-100 X 10(3) cells/ml), with the regression line passing through the origin. Bone marrow frequencies of these two progenitor cells are CFU-Mk, 36.7 +/- 2.5, and BFU-Mk, 7.3 +/- 0.7 per 10(5) total nucleated cells (mean +/- SEM; n = 28). The BFU-Mk have a restricted velocity sedimentation range (3.3-4.5 mmh-1 vs. 3.3-6.8 mmh-1 for CFU-Mk). Modal buoyant densities are 1.068 +/- 0.0002 and 1.070 +/- 0.002 for BFU-Mk and CFU-Mk, respectively. Thus, these cells are found among the smallest and less dense of the Mk progenitors, and are not clumps or clusters of CFU-Mk. Kinetic analysis indicates that CFU-Mk require 5-7 d for optimal growth, whereas BFU-Mk require 10-12 d. Examination of the proliferative potential (cells per colony) shows 19.3 +/- 1.5 cells per colony (n = 246 colonies) for day 10 CFU-Mk, vs. 118 +/- 6.0 for day 10 BFU-Mk (n = 163). Analysis of the cellularity/subcolony within each burst indicates 37.0 +/- 2.1 (n = 146) Mk/colony and 3.9 +/- 0.1 subcolonies/burst (n = 100). Finally, greater than 90% of the BFU-Mk contain only ACh-E positive cells, indicating that these are not mixed colonies. These results indicate that the BFU-Mk, compared with the CFU-Mk, require an increased amount of stimulation in order to differentiate, show delayed in vitro development, and have a higher proliferative potential. These data are consistent with the hypothesis that these cells are early progenitor cells in the Mk lineage that antedate the CFU-Mk.

Full text

PDF
431

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baines P., Bol S., Rosendaal M. Characterization of a developmentally early macrophage progenitor found in normal mouse marrow. Br J Haematol. 1981 May;48(1):147–153. doi: 10.1111/j.1365-2141.1981.00147.x. [DOI] [PubMed] [Google Scholar]
  2. Bol S., Visser J., van den Engh G. The physical separation of three subpopulations of granulocyte/macrophage progenitor cells from mouse bone marrow. Exp Hematol. 1979 Nov;7(10):541–553. [PubMed] [Google Scholar]
  3. Bradley T. R., Hodgson G. S. Detection of primitive macrophage progenitor cells in mouse bone marrow. Blood. 1979 Dec;54(6):1446–1450. [PubMed] [Google Scholar]
  4. Fibach E., Gambari R., Shaw P. A., Maniatis G., Reuben R. C., Sassa S., Rifkind R. A., Marks P. A. Tumor promoter-mediated inhibition of cell differentiation: suppression of the expression of erythroid functions in murine erythroleukemia cells. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1906–1910. doi: 10.1073/pnas.76.4.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Iscove N. N., Sieber F. Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Exp Hematol. 1975 Jan;3(1):32–43. [PubMed] [Google Scholar]
  6. Iscove N. N., Sieber F., Winterhalter K. H. Erythroid colony formation in cultures of mouse and human bone marrow: analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavalin A. J Cell Physiol. 1974 Apr;83(2):309–320. doi: 10.1002/jcp.1040830218. [DOI] [PubMed] [Google Scholar]
  7. Jackson C. W. Cholinesterase as a possible marker for early cells of the megakaryocytic series. Blood. 1973 Sep;42(3):413–421. [PubMed] [Google Scholar]
  8. Levin J., Levin F. C., Penington D. G., Metcalf D. Measurement of ploidy distribution in megakaryocyte colonies obtained from culture: with studies of the effects of thrombocytopenia. Blood. 1981 Feb;57(2):287–297. [PubMed] [Google Scholar]
  9. Long M. W., Smolen J. E., Szczepanski P., Boxer L. A. Role of phorbol diesters in in vitro murine megakaryocyte colony formation. J Clin Invest. 1984 Nov;74(5):1686–1692. doi: 10.1172/JCI111585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Long M. W., Williams N. Differences in the regulation of megakaryocytopoiesis in the murine bone marrow and spleen. Leuk Res. 1982;6(5):721–728. doi: 10.1016/0145-2126(82)90089-3. [DOI] [PubMed] [Google Scholar]
  11. Long M. W., Williams N. Immature Megakaryocytes in the Mouse: Morphology and quantitation by acetylcholinesterase staining. Blood. 1981 Nov;58(5):1032–1039. [PubMed] [Google Scholar]
  12. MacVittie T. J., McCarthy K. F. The detection of in vitro monocyte-macrophage colony-forming cells in mouse thymus and lymph nodes. J Cell Physiol. 1977 Aug;92(2):203–207. doi: 10.1002/jcp.1040920208. [DOI] [PubMed] [Google Scholar]
  13. Metcalf D., MacDonald H. R. Heterogeneity of in vitro colony- and cluster-forming cells in the mouse marrow: segregation by velocity sedimentation. J Cell Physiol. 1975 Jun;85(3):643–654. doi: 10.1002/jcp.1040850317. [DOI] [PubMed] [Google Scholar]
  14. Metcalf D., MacDonald H. R., Odartchenko N., Sordat B. Growth of mouse megakaryocyte colonies in vitro. Proc Natl Acad Sci U S A. 1975 May;72(5):1744–1748. doi: 10.1073/pnas.72.5.1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Metcalf D., MacDonald H. R., Odartchenko N., Sordat B. Growth of mouse megakaryocyte colonies in vitro. Proc Natl Acad Sci U S A. 1975 May;72(5):1744–1748. doi: 10.1073/pnas.72.5.1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller R. G., Phillips R. A. Separation of cells by velocity sedimentation. J Cell Physiol. 1969 Jun;73(3):191–201. doi: 10.1002/jcp.1040730305. [DOI] [PubMed] [Google Scholar]
  17. Nakeff A., Dicke K. A., Noord van M. J. Megakaryocytes in agar cultures of mouse bone marrow. Ser Haematol. 1975;8(1):4–21. [PubMed] [Google Scholar]
  18. Ralph P., Moore M. A., Nilsson K. Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med. 1976 Jun 1;143(6):1528–1533. doi: 10.1084/jem.143.6.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosendaal M., Hodgson G. S., Bradley T. R. Organization of haemopoietic stem cells: the generation-age hypothesis. Cell Tissue Kinet. 1979 Jan;12(1):17–29. doi: 10.1111/j.1365-2184.1979.tb00110.x. [DOI] [PubMed] [Google Scholar]
  20. Sieber F., Stuart R. K., Spivak J. L. Tumor-promoting phorbol esters stimulate myelopoiesis and suppress erythropoiesis in cultures of mouse bone marrow cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4402–4406. doi: 10.1073/pnas.78.7.4402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thean L. E., Hodgson G. S., Bertoncello I., Radley J. M. Characterization of megakaryocyte spleen colony-forming units by response to 5-fluorouracil and by unit gravity sedimentation. Blood. 1983 Oct;62(4):896–901. [PubMed] [Google Scholar]
  22. Wagemaker G., Peters M. F., Bol S. J. Induction of erythropoietin responsiveness in vitro by a distinct population of bone marrow cells. Cell Tissue Kinet. 1979 Sep;12(5):521–537. doi: 10.1111/j.1365-2184.1979.tb00174.x. [DOI] [PubMed] [Google Scholar]
  23. Williams N., Eger R. R., Jackson H. M., Nelson D. J. Two-factor requirement for murine megakaryocyte colony formation. J Cell Physiol. 1982 Jan;110(1):101–104. doi: 10.1002/jcp.1041100116. [DOI] [PubMed] [Google Scholar]
  24. Williams N., Jackson H. Kinetic analysis of megakaryocyte numbers and ploidy levels in developing colonies from mouse bone marrow cells. Cell Tissue Kinet. 1982 Sep;15(5):483–494. doi: 10.1111/j.1365-2184.1982.tb01571.x. [DOI] [PubMed] [Google Scholar]
  25. Williams N., Jackson H., Meyers P. Isolation of pluripotent hemopoietic stem cells and clonable precursor cells of erythrocytes, granulocytes, macrophages and megakaryocytes from mouse bone marrow. Exp Hematol. 1979 Nov;7(10):524–534. [PubMed] [Google Scholar]
  26. Williams N., Jackson H. Regulation of proliferation of murine megakaryocyte progenitor cells by cell cycle. Blood. 1978 Jul;52(1):163–170. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES