Abstract
Observations in vivo suggest that catecholamines modulate reabsorptive functions of proximal tubules by acting on beta-adrenoceptors. However, beta-catecholamine binding sites or beta-adrenoceptor-sensitive adenylate cyclase (AdC) has not been found in segments of proximal tubules of rat, rabbit, or mouse kidney. In the present study, we investigated the responsiveness of AdC to catecholamines, [8-Arg]vasopressin (AVP), and to parathyroid hormone (PTH) in proximal convoluted tubules (PCT), proximal straight tubules (PST), and in late distal convoluted tubules (LDCT) microdissected from canine kidney. Isoproterenol (ISO) caused a marked and dose-dependent stimulation of AdC in PST (maximum: delta + 850%; half maximum stimulation at 10(-7) M ISO), but ISO had no effect on AdC in PCT. The AdC in both PCT and PST was markedly stimulated by PTH; AVP stimulated the AdC in LDCT but not in PST or in PCT. The stimulatory effect of 10(-5) M ISO in PST (delta + 725%) was significantly greater than in LDCT (delta + 307%); norepinephrine and epinephrine had stimulatory effects in PST similar to ISO. The stimulation of AdC in PST by ISO was blocked by propranolol and by beta 2-blocker ICI-118551. On the other hand, alpha-blocker phentolamine and beta 1-blocker metoprolol did not abolish the stimulation of AdC in PST by ISO. The accumulation of cAMP in intact PCT and PST incubated in vitro was stimulated by PTH both in PST and in PCT, but ISO elevated cAMP (delta + 683%) only in PST. Our results show that proximal tubules of canine nephron, PST but not PCT, contain beta-adrenoceptors of beta 2 subtype coupled to AdC. These observations provide direct evidence that the effects of catecholamines, either released from renal nerve endings or arriving from blood supply, can act directly on beta 2-adrenoceptors located in proximal tubules, and also suggest that at least some of the catecholamine effects in proximal tubules are mediated via cAMP generation.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barajas L., Powers K., Wang P. Innervation of the renal cortical tubules: a quantitative study. Am J Physiol. 1984 Jul;247(1 Pt 2):F50–F60. doi: 10.1152/ajprenal.1984.247.1.F50. [DOI] [PubMed] [Google Scholar]
- Beck N. P., Reed S. W., Murdaugh H. V., Davis B. B. Effects of catecholamines and their interaction with other hormones on cyclic 3',5'-adenosine monophosphate of the kidney. J Clin Invest. 1972 Apr;51(4):939–944. doi: 10.1172/JCI106888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bello-Reuss E. Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule. Am J Physiol. 1980 May;238(5):F347–F352. doi: 10.1152/ajprenal.1980.238.5.F347. [DOI] [PubMed] [Google Scholar]
- Bernstein K. N., O'Connor D. T. Antiadrenergic antihypertensive drugs: their effect on renal function. Annu Rev Pharmacol Toxicol. 1984;24:105–120. doi: 10.1146/annurev.pa.24.040184.000541. [DOI] [PubMed] [Google Scholar]
- Bravo E. L., Tarazi R. C., Gifford R. W., Stewart B. H. Circulating and urinary catecholamines in pheochromocytoma. Diagnostic and pathophysiologic implications. N Engl J Med. 1979 Sep 27;301(13):682–686. doi: 10.1056/NEJM197909273011302. [DOI] [PubMed] [Google Scholar]
- Bulger R. E., Cronin R. E., Dobyan D. C. Survey of the morphology of the dog kidney. Anat Rec. 1979 May;194(1):41–65. doi: 10.1002/ar.1091940104. [DOI] [PubMed] [Google Scholar]
- Chabardès D., Imbert-Teboul M., Montégut M., Clique A., Morel F. Catecholamine sensitive adenylate cyclase activity in different segments of the rabbit nephron. Pflugers Arch. 1975 Dec 19;361(1):9–15. doi: 10.1007/BF00587334. [DOI] [PubMed] [Google Scholar]
- DiBona G. F. Neural control of renal tubular sodium reabsorption of the dog. Fed Proc. 1978 Apr;37(5):1214–1217. [PubMed] [Google Scholar]
- DiBona G. F. Neurogenic regulation of renal tubular sodium reabsorption. Am J Physiol. 1977 Aug;233(2):F73–F81. doi: 10.1152/ajprenal.1977.233.2.F73. [DOI] [PubMed] [Google Scholar]
- Edwards R. M. Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels. Am J Physiol. 1983 May;244(5):F526–F534. doi: 10.1152/ajprenal.1983.244.5.F526. [DOI] [PubMed] [Google Scholar]
- Iino Y., Troy J. L., Brenner B. M. Effects of catecholamines on electrolyte transport in cortical collecting tubule. J Membr Biol. 1981;61(2):67–73. doi: 10.1007/BF02007632. [DOI] [PubMed] [Google Scholar]
- Imai M. The connecting tubule: a functional subdivision of the rabbit distal nephron segments. Kidney Int. 1979 Apr;15(4):346–356. doi: 10.1038/ki.1979.46. [DOI] [PubMed] [Google Scholar]
- Imbert-Teboul M., Charbardès D., Morel F. Vasopressin and catecholamines sites of action along rabbit, mouse and rat nephron. Contrib Nephrol. 1980;21:41–47. doi: 10.1159/000385245. [DOI] [PubMed] [Google Scholar]
- Insel P. A., Snavely M. D. Catecholamines and the kidney: receptors and renal function. Annu Rev Physiol. 1981;43:625–636. doi: 10.1146/annurev.ph.43.030181.003205. [DOI] [PubMed] [Google Scholar]
- Jackson B. A., Edwards R. M., Valtin H., Dousa T. P. Cellular action of vasopressin in medullary tubules of mice with hereditary nephrogenic diabetes insipidus. J Clin Invest. 1980 Jul;66(1):110–122. doi: 10.1172/JCI109824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katholi R. E., Oparil S., Urthaler F., James T. N. Mechanism of postarrhythmic renal vasoconstriction in the anesthetized dog. J Clin Invest. 1979 Jul;64(1):17–31. doi: 10.1172/JCI109436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawashima H., Torikai S., Kurokawa K. Localization of 25-hydroxyvitamin D3 1 alpha-hydroxylase and 24-hydroxylase along the rat nephron. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1199–1203. doi: 10.1073/pnas.78.2.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiebzak G. M., Yusufi A. N., Kusano E., Braun-Werness J., Dousa T. P. ATP and cAMP system in the in vitro response of microdissected cortical tubules to PTH. Am J Physiol. 1985 Jan;248(1 Pt 2):F152–F159. doi: 10.1152/ajprenal.1985.248.1.F152. [DOI] [PubMed] [Google Scholar]
- Kim J. K., Linas S. L., Schrier R. W. Catecholamines and sodium transport in the kidney. Pharmacol Rev. 1979 Sep;31(3):169–178. [PubMed] [Google Scholar]
- Kimmel P. L., Goldfarb S. Effects of isoproterenol on potassium secretion by the cortical collecting tubule. Am J Physiol. 1984 Jun;246(6 Pt 2):F804–F810. doi: 10.1152/ajprenal.1984.246.6.F804. [DOI] [PubMed] [Google Scholar]
- Kusano E., Braun-Werness J. L., Vick D. J., Keller M. J., Dousa T. P. Chlorpropamide action on renal concentrating mechanism in rats with hypothalamic diabetes insipidus. J Clin Invest. 1983 Oct;72(4):1298–1313. doi: 10.1172/JCI111086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kusano E., Nakamura R., Asano Y., Imai M. Distribution of alpha-adrenergic receptors in the rabbit nephron. Tohoku J Exp Med. 1984 Mar;142(3):275–282. doi: 10.1620/tjem.142.275. [DOI] [PubMed] [Google Scholar]
- Morel F. Regulation of kidney functions by hormones: a new approach. Recent Prog Horm Res. 1983;39:271–304. doi: 10.1016/b978-0-12-571139-5.50011-2. [DOI] [PubMed] [Google Scholar]
- Morel F. Sites of hormone action in the mammalian nephron. Am J Physiol. 1981 Mar;240(3):F159–F164. doi: 10.1152/ajprenal.1981.240.3.F159. [DOI] [PubMed] [Google Scholar]
- Murayama N., Werness J. L., Kusano E., Christensen S., Dousa T. P. Interaction of forskolin with vasopressin-sensitive cyclic AMP system in renal medullary tubules. J Cyclic Nucleotide Protein Phosphor Res. 1983;9(6):427–433. [PubMed] [Google Scholar]
- Münzel P. A., Healy D. P., Insel P. A. Autoradiographic localization of beta-adrenergic receptors in rat kidney slices using [125I]iodocyanopindolol. Am J Physiol. 1984 Feb;246(2 Pt 2):F240–F245. doi: 10.1152/ajprenal.1984.246.2.F240. [DOI] [PubMed] [Google Scholar]
- Nadeau R. A., de Champlain J. Plasma catecholamines in acute myocardial infarction. Am Heart J. 1979 Nov;98(5):548–554. doi: 10.1016/0002-8703(79)90278-3. [DOI] [PubMed] [Google Scholar]
- O'Donnell S. R., Wanstall J. C. Demonstration of both beta 1- and beta 2-adrenoceptors mediating relaxation of isolated ring preparations of rat pulmonary artery. Br J Pharmacol. 1981 Nov;74(3):547–552. doi: 10.1111/j.1476-5381.1981.tb10463.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruggles B. T., Murayama N., Werness J. L., Gapstur S. M., Bentley M. D., Dousa T. P. The vasopressin-sensitive adenylate cyclase in collecting tubules and in thick ascending limb of Henle's loop of human and canine kidney. J Clin Endocrinol Metab. 1985 May;60(5):914–921. doi: 10.1210/jcem-60-5-914. [DOI] [PubMed] [Google Scholar]
- Stiles G. L., Caron M. G., Lefkowitz R. J. Beta-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev. 1984 Apr;64(2):661–743. doi: 10.1152/physrev.1984.64.2.661. [DOI] [PubMed] [Google Scholar]


