Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Nov;78(5):1410–1414. doi: 10.1172/JCI112729

In vivo evidence for reduced binding of low density lipoproteins to receptors as a cause of primary moderate hypercholesterolemia.

G L Vega, S M Grundy
PMCID: PMC423848  PMID: 3771801

Abstract

The causes of primary moderate hypercholesterolemia are not understood, but some patients have reduced fractional clearance rates (FCRs) for low density lipoproteins (LDL). This could be due to either decreased activity of LDL receptors or to a defect in structure (or composition) of LDL that reduces its affinity for receptors. To distinguish between these causes, simultaneous turnover rates of autologous and normal homologous LDL were determined in 15 patients with primary moderate hypercholesterolemia. In 10, turnover rates of both types of LDL were indistinguishable, which indicated that autologous LDL was cleared as efficiently as normal homologous LDL. In five others, FCRs for autologous LDL were significantly lower than for homologous LDL. Two of the latter five were treated with mevinolin, and although FCRs for both types of LDL rose during treatment, differences in FCRs between the two types of LDL persisted. In these five patients, autologous LDL appeared to be a poor ligand for LDL receptors.

Full text

PDF
1410

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bilheimer D. W., Grundy S. M., Brown M. S., Goldstein J. L. Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4124–4128. doi: 10.1073/pnas.80.13.4124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chan L., VanTuinen P., Ledbetter D. H., Daiger S. P., Gotto A. M., Jr, Chen S. H. The human apolipoprotein B-100 gene: a highly polymorphic gene that maps to the short arm of chromosome 2. Biochem Biophys Res Commun. 1985 Nov 27;133(1):248–255. doi: 10.1016/0006-291x(85)91868-6. [DOI] [PubMed] [Google Scholar]
  3. Deeb S. S., Motulsky A. G., Albers J. J. A partial cDNA clone for human apolipoprotein B. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4983–4986. doi: 10.1073/pnas.82.15.4983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grundy S. M., Vega G. L., Bilheimer D. W. Kinetic mechanisms determining variability in low density lipoprotein levels and rise with age. Arteriosclerosis. 1985 Nov-Dec;5(6):623–630. doi: 10.1161/01.atv.5.6.623. [DOI] [PubMed] [Google Scholar]
  5. Grundy S. M., Vega G. L. Influence of mevinolin on metabolism of low density lipoproteins in primary moderate hypercholesterolemia. J Lipid Res. 1985 Dec;26(12):1464–1475. [PubMed] [Google Scholar]
  6. Heiss G., Tamir I., Davis C. E., Tyroler H. A., Rifkand B. M., Schonfeld G., Jacobs D., Frantz I. D., Jr Lipoprotein-cholesterol distributions in selected North American populations: the lipid research clinics program prevalence study. Circulation. 1980 Feb;61(2):302–315. doi: 10.1161/01.cir.61.2.302. [DOI] [PubMed] [Google Scholar]
  7. Innerarity T. L., Mahley R. W. Enhanced binding by cultured human fibroblasts of apo-E-containing lipoproteins as compared with low density lipoproteins. Biochemistry. 1978 Apr 18;17(8):1440–1447. doi: 10.1021/bi00601a013. [DOI] [PubMed] [Google Scholar]
  8. Kesaniemi Y. A., Grundy S. M. Increased low density lipoprotein production associated with obesity. Arteriosclerosis. 1983 Mar-Apr;3(2):170–177. doi: 10.1161/01.atv.3.2.170. [DOI] [PubMed] [Google Scholar]
  9. Knott T. J., Rall S. C., Jr, Innerarity T. L., Jacobson S. F., Urdea M. S., Levy-Wilson B., Powell L. M., Pease R. J., Eddy R., Nakai H. Human apolipoprotein B: structure of carboxyl-terminal domains, sites of gene expression, and chromosomal localization. Science. 1985 Oct 4;230(4721):37–43. doi: 10.1126/science.2994225. [DOI] [PubMed] [Google Scholar]
  10. MATTHEWS C. M. The theory of tracer experiments with 131I-labelled plasma proteins. Phys Med Biol. 1957 Jul;2(1):36–53. doi: 10.1088/0031-9155/2/1/305. [DOI] [PubMed] [Google Scholar]
  11. McDougal J. S., Cort S. P., Kennedy M. S., Cabridilla C. D., Feorino P. M., Francis D. P., Hicks D., Kalyanaraman V. S., Martin L. S. Immunoassay for the detection and quantitation of infectious human retrovirus, lymphadenopathy-associated virus (LAV). J Immunol Methods. 1985 Jan 21;76(1):171–183. doi: 10.1016/0022-1759(85)90489-2. [DOI] [PubMed] [Google Scholar]
  12. Nora J. J., Lortscher R. M., Spangler R. D., Bilheimer D. W. Familial hypercholesterolemia with "normal" cholesterol in obligate heterozygotes. Am J Med Genet. 1985 Nov;22(3):585–591. doi: 10.1002/ajmg.1320220317. [DOI] [PubMed] [Google Scholar]
  13. Priestley L., Knott T., Wallis S., Powell L., Pease R., Simon A., Scott J. RFLP for the human apolipoprotein B gene: I;BamHI. Nucleic Acids Res. 1985 Sep 25;13(18):6789–6789. doi: 10.1093/nar/13.18.6789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Simons L. A., Reichl D., Myant N. B., Mancini M. The metabolism of the apoprotein of plasma low density lipoprotein in familial hyperbetalipoproteinaemia in the homozygous form. Atherosclerosis. 1975 Mar-Apr;21(2):283–298. doi: 10.1016/0021-9150(75)90087-8. [DOI] [PubMed] [Google Scholar]
  15. Vega G. L., Groszek E., Wolf R., Grundy S. M. Influence of polyunsaturated fats on composition of plasma lipoproteins and apolipoproteins. J Lipid Res. 1982 Aug;23(6):811–822. [PubMed] [Google Scholar]
  16. Weisgraber K. H., Rall S. C., Jr, Mahley R. W. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem. 1981 Sep 10;256(17):9077–9083. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES