Abstract
The sesquiterpene lactone antineoplastic vernolepin acutely depletes murine tumor cell glutathione (GSH), and lyses the cells by an unknown mechanism that is enhanced synergistically by inhibition of GSH synthesis with buthionine sulfoximine (BSO) (Arrick et al. 1983. J. Clin. Invest. 71:258). We found here that lysis of P815 mastocytoma cells by vernolepin, with or without BSO, required cystine in the culture medium. Addition of catalase markedly suppressed vernolepin-mediated cytolysis in cystine-containing media, suggesting the involvement of hydrogen peroxide in the cytolytic action of vernolepin. Consistent with this, inhibition of tumor cell glutathione disulfide reductase with 1,3-bis(2-chloroethyl)-1-nitrosourea or inhibition of endogenous catalase with aminotriazole synergistically augmented cytolysis by vernolepin. Moreover, H2O2 was released by suspensions of P815 cells in cystine-containing buffer (63 pmol/10(6) cells X h). Omission of cystine reduced the rate of H2O2 accumulation 10-fold. No H2O2 was detected without cells. Cytolysis by vernolepin could be restored in cystine-deficient medium by several other disulfides, themselves noncytolytic, such as disulfiram and oxidized Captopril, as well as by cysteine. In contrast, withholding two other essential amino acids (leucine or tryptophan) or adding cycloheximide did not interfere with cytolysis by vernolepin. These results suggest that cellular uptake of disulfides of physiologic and pharmacologic interest may be followed by their intracellular reduction and autooxidation with generation of H2O2. This previously unrecognized source of intracellular oxidant stress may be an important component of injury to GSH-depleted cells.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ager A., Gordon J. L. Differential effects of hydrogen peroxide on indices of endothelial cell function. J Exp Med. 1984 Feb 1;159(2):592–603. doi: 10.1084/jem.159.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
- Arrick B. A., Nathan C. F., Cohn Z. A. Inhibition of glutathione synthesis augments lysis of murine tumor cells by sulfhydryl-reactive antineoplastics. J Clin Invest. 1983 Feb;71(2):258–267. doi: 10.1172/JCI110766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arrick B. A., Nathan C. F. Glutathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res. 1984 Oct;44(10):4224–4232. [PubMed] [Google Scholar]
- Arrick B. A., Nathan C. F., Griffith O. W., Cohn Z. A. Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J Biol Chem. 1982 Feb 10;257(3):1231–1237. [PubMed] [Google Scholar]
- Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beatty P. W., Reed D. J. Involvement of the cystathionine pathway in the biosynthesis of glutathione by isolated rat hepatocytes. Arch Biochem Biophys. 1980 Oct 1;204(1):80–87. doi: 10.1016/0003-9861(80)90009-0. [DOI] [PubMed] [Google Scholar]
- Brodie A. E., Potter J., Ellis W. W., Evenson M. C., Reed D. J. Glutathione biosynthesis in murine L5178Y lymphoma cells. Arch Biochem Biophys. 1981 Sep;210(2):437–444. doi: 10.1016/0003-9861(81)90207-1. [DOI] [PubMed] [Google Scholar]
- Brodie A. E., Potter J., Reed D. J. Unique characteristics of rat spleen lymphocyte, L1210 lymphoma and HeLa cells in glutathione biosynthesis from sulfur-containing amino acids. Eur J Biochem. 1982 Mar;123(1):159–164. doi: 10.1111/j.1432-1033.1982.tb06512.x. [DOI] [PubMed] [Google Scholar]
- Carlsson J., Granberg G. P., Nyberg G. K., Edlund M. B. Bactericidal effect of cysteine exposed to atmospheric oxygen. Appl Environ Microbiol. 1979 Mar;37(3):383–390. doi: 10.1128/aem.37.3.383-390.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavallini D., De Marco C., Dupré S. Luminol chemiluminescence studies of the oxidation of cysteine and other thiols to disulfides. Arch Biochem Biophys. 1968 Mar 20;124(1):18–26. doi: 10.1016/0003-9861(68)90299-3. [DOI] [PubMed] [Google Scholar]
- Fridovich I. Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol. 1983;23:239–257. doi: 10.1146/annurev.pa.23.040183.001323. [DOI] [PubMed] [Google Scholar]
- Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. doi: 10.1126/science.210504. [DOI] [PubMed] [Google Scholar]
- Glode L. M., Greene H. L., Bikel I. gamma-Cystathionase in normal and leukemic cells. Cancer Treat Rep. 1979 Jun;63(6):1081–1088. [PubMed] [Google Scholar]
- Griffith O. W., Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 1979 Aug 25;254(16):7558–7560. [PubMed] [Google Scholar]
- HIGUCHI K. Studies on the nutrition and metabolism of animal cells in serum-free media. I. Serum-free monolayer cultures. J Infect Dis. 1963 May-Jun;112:213–220. doi: 10.1093/infdis/112.3.213. [DOI] [PubMed] [Google Scholar]
- Hanson R. L., Lardy H. A., Kupchan S. M. Inhibition of phosphofructokinase by quinone methide and alpha-methylene lactone tumor inhibitors. Science. 1970 Apr 17;168(3929):378–380. doi: 10.1126/science.168.3929.378. [DOI] [PubMed] [Google Scholar]
- Harker L. A., Ross R., Slichter S. J., Scott C. R. Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 1976 Sep;58(3):731–741. doi: 10.1172/JCI108520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harker L. A., Slichter S. J., Scott C. R., Ross R. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med. 1974 Sep 12;291(11):537–543. doi: 10.1056/NEJM197409122911101. [DOI] [PubMed] [Google Scholar]
- Higashi T., Tateishi N., Naruse A., Sakamoto Y. A novel physiological role of liver glutathione as a reservoir of L-cysteine. J Biochem. 1977 Jul;82(1):117–124. doi: 10.1093/oxfordjournals.jbchem.a131659. [DOI] [PubMed] [Google Scholar]
- Iglehart J. K., York R. M., Modest A. P., Lazarus H., Livingston D. M. Cystine requirement of continuous human lymphoid cell lines of normal and leukemic origin. J Biol Chem. 1977 Oct 25;252(20):7184–7191. [PubMed] [Google Scholar]
- Kupchan S. M., Fessler D. C., Eakin M. A., Giacobbe T. J. Reactions of alpha methylene lactone tumor inhibitors with model biological nucelophiles. Science. 1970 Apr 17;168(3929):376–378. doi: 10.1126/science.168.3929.376. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee K. H., Hall I. H., Mar E. C., Starnes C. O., ElGebaly S. A., Waddell T. G., HADGRAFT R. I., Ruffner C. G., Weidner I. Sesquiterpene antitumor agents: inhibitors of cellular metabolism. Science. 1977 Apr 29;196(4289):533–536. doi: 10.1126/science.191909. [DOI] [PubMed] [Google Scholar]
- Liou Y. F., Hall I. H., Lee K. H., Williams W. L., Jr, Chaney S. G. Investigation of sesquiterpene lactones as protein synthesis inhibitors of P-388 lymphocytic leukemia cells. Biochim Biophys Acta. 1983 Mar 10;739(2):190–196. doi: 10.1016/0167-4781(83)90029-5. [DOI] [PubMed] [Google Scholar]
- Meister A. Selective modification of glutathione metabolism. Science. 1983 Apr 29;220(4596):472–477. doi: 10.1126/science.6836290. [DOI] [PubMed] [Google Scholar]
- Misra H. P. Generation of superoxide free radical during the autoxidation of thiols. J Biol Chem. 1974 Apr 10;249(7):2151–2155. [PubMed] [Google Scholar]
- Nathan C. F., Arrick B. A., Murray H. W., DeSantis N. M., Cohn Z. A. Tumor cell anti-oxidant defenses. Inhibition of the glutathione redox cycle enhances macrophage-mediated cytolysis. J Exp Med. 1981 Apr 1;153(4):766–782. doi: 10.1084/jem.153.4.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Cohn Z. A. Antitumor effects of hydrogen peroxide in vivo. J Exp Med. 1981 Nov 1;154(5):1539–1553. doi: 10.1084/jem.154.5.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Root R. K. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 1977 Dec 1;146(6):1648–1662. doi: 10.1084/jem.146.6.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishiuch Y., Sasaki M., Nakayasu M., Oikawa A. Cytotoxicity of cysteine in culture media. In Vitro. 1976 Sep;12(9):635–638. doi: 10.1007/BF02797462. [DOI] [PubMed] [Google Scholar]
- PIEZ K. A., EAGLE H. The free amino acid pool of cultured human cells. J Biol Chem. 1958 Mar;231(1):533–545. [PubMed] [Google Scholar]
- Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158–169. [PubMed] [Google Scholar]
- Roos D., Weening R. S., Voetman A. A., van Schaik M. L., Bot A. A., Meerhof L. J., Loos J. A. Protection of phagocytic leukocytes by endogenous glutathione: studies in a family with glutathione reductase deficiency. Blood. 1979 May;53(5):851–866. [PubMed] [Google Scholar]
- STROMME J. H. Effects of diethyldithiocarbamate and disulfiram on glucose metabolism and glutathione content of human erythrocytes. Biochem Pharmacol. 1963 Jul;12:705–715. doi: 10.1016/0006-2952(63)90046-7. [DOI] [PubMed] [Google Scholar]
- Scheibel L. W., Adler A., Trager W. Tetraethylthiuram disulfide (Antabuse) inhibits the human malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5303–5307. doi: 10.1073/pnas.76.10.5303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinet P. M., Garber P., Jerome H. H2O2 production, modification of the glutathione status and methemoglobin formation in red blood cells exposed to diethyldithiocarbamate in vitro. Biochem Pharmacol. 1982 Feb 15;31(4):521–525. doi: 10.1016/0006-2952(82)90154-x. [DOI] [PubMed] [Google Scholar]
- Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
- Trotta P. P., Pinkus L. M., Meister A. Inhibition by dithiothreitol of the utilization of glutamine by carbamyl phosphate synthetase. Evidence for formation of hydrogen peroxide. J Biol Chem. 1974 Mar 25;249(6):1915–1921. [PubMed] [Google Scholar]
- Uren J. R., Lazarus H. L-cyst(e)ine requirements of malignant cells and progress toward depletion therapy. Cancer Treat Rep. 1979 Jun;63(6):1073–1079. [PubMed] [Google Scholar]
- Uren J. R., Ragin R., Chaykovsky M. Modulation of cysteine metabolism in mice--effects of propargylglycine and L-cyst(e)ine-degrading enzymes. Biochem Pharmacol. 1978;27(24):2807–2814. doi: 10.1016/0006-2952(78)90194-6. [DOI] [PubMed] [Google Scholar]
- Viña J., Saez G. T., Wiggins D., Roberts A. F., Hems R., Krebs H. A. The effect of cysteine oxidation on isolated hepatocytes. Biochem J. 1983 Apr 15;212(1):39–44. doi: 10.1042/bj2120039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss S. J., Young J., LoBuglio A. F., Slivka A., Nimeh N. F. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J Clin Invest. 1981 Sep;68(3):714–721. doi: 10.1172/JCI110307. [DOI] [PMC free article] [PubMed] [Google Scholar]
