Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2014 Nov 20;2(6):e01106-14. doi: 10.1128/genomeA.01106-14

Whole-Genome Assemblies of 56 Burkholderia Species

H E Daligault a, K W Davenport a, T D Minogue b, K A Bishop-Lilly c,d,c,d, S M Broomall e, D C Bruce a, P S Chain a, S R Coyne b, K G Frey c,d,c,d, H S Gibbons e, J Jaissle b, G I Koroleva f, J T Ladner f, C-C Lo a, C Munk a, G F Palacios f, C L Redden c,d,c,d, C N Rosenzweig e, M B Scholz a,*, S L Johnson a,
PMCID: PMC4239345  PMID: 25414490

Abstract

Burkholderia is a genus of betaproteobacteria that includes three notable human pathogens: B. cepacia, B. pseudomallei, and B. mallei. While B. pseudomallei and B. mallei are considered potential biowarfare agents, B. cepacia infections are largely limited to cystic fibrosis patients. Here, we present 56 Burkholderia genomes from 8 distinct species.

GENOME ANNOUNCEMENT

Burkholderia is a diverse genus of Gram-negative aerobic bacilli that was previously considered part of the genus Pseudomonas (1). Of the 82 recognized Burkholderia species, three are notable human pathogens: B. pseudomallei, B. mallei, and B. cepacia (an opportunistic lung infection pathogen in cystic fibrosis patients).

B. pseudomallei, the causative agent of melioidosis, is an environmental bacterium commonly found in southeastern Asia and northern Australia, where it causes multiple annual outbreaks. B. mallei is an obligate pathogen that primarily causes disease in horses, mules, and donkeys (called farcy) but is also the causative agent of glanders in humans, which can be either an acute or chronic infection (1). Both B. pseudomallei and B. mallei are on the CDC category B list due to their low infectious dose and high mortality rates, even with antibiotic therapy (2). While no evidence exists for the weaponization of B. pseudomallei, B. mallei has been developed as a weapon (2), and with their high transmission and mortality rates, both are considered potential biowarfare agents (35).

We sequenced the genomes of two Burkholderia cenocepacia, four B. cepacia, one Burkholderia gladioli, eight B. mallei, two Burkholderia multivorans, one Burkholderia oklahomensis, 34 B. pseudomallei, two Burkholderia thailandendsis, one Burkholderia xenovorans, and one strain not identified to species level. These additions will increase the publicly available scaffolded and completed genomes by 11 to 100% for each species (46% over all species).

High-quality genomic DNA was extracted from 100-ml bacterial cultures of purified isolates for each strain using the Qiagen Genomic tip-500, per the manufacturer’s recommendations, with one minor variation. For biosafety level 3 (BSL3) Burkholderia organisms, all cultures were lysed overnight to ensure the sterility of the resulting extracted material. If sterility was not achieved, the nucleic acid was passed through a 0.45-µM filter and rechecked for viable organisms before removal from the BSL3 suite.

The sequence data for each draft genome include at least two data types: Illumina (6), 454 (7), and for some, PacBio (8) technologies. The draft genome coverages for each data type are included in the NCBI submission records; however, the Illumina (either unpaired or short-insert) coverages ranged from 114- to 1,067-fold, and the 454-based long-insert (insert size range, 5.2 to 12.7 kb) coverages were generally <50-fold. The combined draft data had genome coverages between 134- and 1,186-fold. The 454 and Illumina data were assembled together using Newbler and Velvet. All draft data were assembled together with AllPaths (9), and if the PacBio data were available and at ≥100× coverage, they were assembled using HGAP (10). The consensus sequences from all assemblers were computationally shredded and assembled with a subset of read pairs from the long-insert library using Phrap (11, 12). The resulting assemblies were manually and computationally improved using Consed (13) and in-house scripts.

The annotations were completed using the Ergatis workflow manager (14) and in-house scripts. The genomes are available in NCBI, and the raw data can be provided upon request. In-depth comparative analyses of these and other genomes will be published in subsequent reports.

Nucleotide sequence accession numbers.

The genome accession numbers to public databases are listed in Table 1.

TABLE 1.

Accession numbers and basic assembly statistics for each assembled Burkholderia genome

Strain Alternate IDa Source Accession no. (no. of contigs) Size (bp)/G+C (%) No. of CDSb
Burkholderia cenocepacia
    DDS 22E-1 BHS Australia, aerosol, 2005 CP007782-CP007784 8,045,250/67.0 7,088
    DWS 37E-2 BHT Australia, soil, 2007 CP007779-CP007781 6,612,421/66.5 5,775
Burkholderia cepacia
    ATCC 25416 BGF United States, plant, 1948 CP007745-CP007748 8,567,011/66.6 7,739
    DDS 7H-2 BHR Australia, aerosol, 2005 CP007785-CP007787 8,147,114/67.1 7,337
    DWS 16B-4 BHX Australia JPGE00000000 (4) 8,112,163/67.1 7,289
    DWS 37UF10B-2 BHW Australia, soil, 2007 JPGD00000000 (6) 7,182,032/67.2 6,400
Burkholderia gladioli
    ATCC 25417 ICPB PM 2 Plant JPGG00000000 (18) 9,311,425/67.4 8,044
Burkholderia mallei
    092700E NCTC 10247 Turkey, 1960 CP007801 and CP007802 5,827,656/68.5 5,001
    ATCC 23344 China 7, BMF Burma, human, 1944 CP008704 and CP008705 5,625,292/68.5 4,883
    BMK ATCC 15310 Hungary, horse, 1961 CP008731 and CP008732 5,872,022/68.5 5,069
    BMQ 106 India, horse, 1932 CP008722 and CP008723 5,630,231/68.5 4,892
    BMY 6 Turkey, human, 1950 CP008710 and CP008711 5,647,769/68.5 4,872
    BMZ ATCC 10399 China, horse, 1956 JPNX00000000 (3) 5,856,639/68.5 5,031
    FMH BGL Burma, human, 1944 CP009147 to CP009148 5,835,541/68.5 5,026
    SR092700I BMP NAc JNLV00000000 (246) 5,675,037/68.5 5,236
Burkholderia multivorans
    DDS 15A-1 BHQ Australia, aerosol, 2005 CP008729 and CP008730 7,281,867/66.6 6,529
    DWS 42B-1 BHV Thailand, soil, 2007 JNLW00000000 (6) 6,505,001/67.3 5,773
Burkholderia oklahomensis
    BDU E0147 United States, human CP008726 and CP008727 7,313,673/66.9 6,312
Burkholderia pseudomallei
    BDD DSTO T18 Australia, human, 1996 JNOW00000000 (80) 7,361,146/68.0 6,206
    BDE DSTO T21 Australia, human, 1997 JPNW00000000 (118) 7,253,846/68.1 6,144
    BDI DSTO T27 Australia, human, 1998 JPNU00000000 (76) 7,268,791/68.1 6,106
    BDM DSTO T30 Australia, human, 1998 JPNV00000000 (102) 7,495,075/67.9 6,411
    BDT DSTO T43 Australia, human, 1999 JOTS00000000 (53) 7,358,678/67.9 6,143
    BDZ DSTO T43 Australia, human, 1996 JPNO00000000 (357) 7,296,307/68.0 6,519
    BEB DSTO T82 Australia, human, 2000 JPNP00000000 (142) 7,310,901/68.1 6,367
    BEC DSTO T87 Australia, human, 2000 JOTX00000000 (248) 7,533,026/68.0 6,797
    BED DSTO T2 Australia, human, 1996 JPNQ00000000 (254) 7,244,575/68.0 6,418
    BEF DSTO T14 Australia, human, 1996 JPNR00000000 (232) 7,297,941/68.0 6,473
    BEG DSTO T17 Australia, human, 1996 JOTY00000000 (245) 7,445,118/67.9 6,604
    BEH DSTO T106 Australia, human, 2001 JOTZ00000000 (187) 7,362,104/67.9 6,413
    BEJ PHLS 112 Thailand JPNS00000000 (4) 7,198,519/68.2 5,884
    BEK 9 Pakistan CP008754 and CP008755 7,228,737/68.1 5,978
    BEM Pasteur 52237 Vietnam JPNT00000000 (9) 7,358,404/68.0 6,090
    BEO 1106a Thailand, human, 1993 CP008758 to CP008759 7,086,433/68.3 5,758
    BES DSTO T75 Australia, human, 2000 JPHA00000000 (305) 7,720,797/67.6 7,070
    BEX MSHR576A Thailand CP008777 and CP008778 7,266,604/68.0 5,944
    BEZ MSHR1655 NA CP008779 and CP008780 7,027,950/68.0 5,798
    BFB MSHR346 NA CP008763 and CP008764 7,354,216/67.9 6,044
    BFD DSTO T9 Australia, human, 1996 JOTT00000000 (67) 7,343,224/67.9 6,201
    BGH DSTO T88 Australia, human, 2000 JOTU00000000 (15) 7,506,190/67.9 6,269
    BGQ 576a Thailand JOTV00000000 (79) 7,245,828/67.9 6,128
    BGR 1026b NA CP008834 and CP008835 7,231,385/68.2 5,960
    BGS 1106b Thailand JOTW00000000 (52) 7,077,890/68.2 5,853
    BGV DSTO T6 Australia, human, 1996 JPHB00000000 (23) 7,451,876/67.9 6,204
    BSR 406e NA CP009127 and CP009128 7,272,702/68.1 5,941
    HBPUB10134a BHN Thailand, human, 2010 CP008911 and CP008912 7,218,403/68.1 5,858
    HBPUB10303a BHO Thailand, human, 2011 CP008893 and CP008894 7,178,176/68.2 5,834
    Mahidol-1106a BGI Thailand CP008781 and CP008782 7,085,397/68.3 5,748
    MSHR305 BDP Human, 1994 CP009209 and CP009210 7,442,161/67.9 6,144
    MSHR5848 BHL Australia, human, 2011 CP008909 and CP008910 7,290,434/68.1 5,989
    MSHR5855 BHK Australia, human, 2011 CP008783 and CP008784 7,297,804/68.0 6,001
    MSHR5858 BHM Australia, human, 2011 CP008891 and CP008892 7,070,528/68.3 5,781
Burkholderia thailandensis
    BDK 2003015869 United States, human CP008914 and CP008915 6,728,580/67.7 5,709
    BTY E264 Thailand, soil, 1994 CP008785 and CP008786 6,722,099/67.6 5,655
Burkholderia xenovorans
    BXA LB400, BXA United States, soil, 1985 CP008760 and CP008762 9,702,951/62.6 8,684
Burkholderia sp.
    BGJ 1710a Thailand JOUA00000000 (9) 5,472,690/67.9 5,983
    BGK 1710b Thailand CP008916 and CP008917 7,304,000/68.0 5,962
a

ID, identification.

b

CDS, coding sequences.

c

NA, not available.

ACKNOWLEDGMENTS

Funding for this effort was provided by the Defense Threat Reduction Agency’s Joint Science and Technology Office (DTRA J9-CB/JSTO).

This paper is approved by the LANL for unlimited release (LA-UR-14-25908).

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or positions of the Department of the Navy, Department of Defense, or the U.S. Government.

Footnotes

Citation Daligault HE, Davenport KW, Minogue TD, Bishop-Lilly KA, Broomall SM, Bruce DC, Chain PS, Coyne SR, Frey KG, Gibbons HS, Jaissle J, Koroleva GI, Ladner JT, Lo C-C, Munk C, Palacios GF, Redden CL, Rosenzweig CN, Scholz MB, Johnson SL. 2014. Whole-genome assemblies of 56 Burkholderia species. Genome Announc. 2(6):e01106-14. doi:10.1128/genomeA.01106-14.

REFERENCES

  • 1. Asche V, Haase A. 2002. Burkholderia mallei and Burkholderia pseudomallei, p 961–972 In Sussman M. (ed), Molecular medical microbiology: volumes 1–3. [Google Scholar]
  • 2. National Institute of Allergy and Infectious Diseases 2003. NIAID biodefense research agenda for category B and C priority pathogens. National Insitute of Allergy and Infectious Diseases, Bethesda, MD: http://www.niaid.nih.gov/topics/BiodefenseRelated/Biodefense/Documents/categorybandc.pdf. [Google Scholar]
  • 3. Nierman WC, DeShazer D, Kim HS, Tettelin H, Nelson KE, Feldblyum T, Ulrich RL, Ronning CM, Brinkac LM, Daugherty SC, Davidsen TD, Deboy RT, Dimitrov G, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Khouri H, Kolonay JF, Madupu R, Mohammoud Y, Nelson WC, Radune D, Romero CM, Sarria S, Selengut J, Shamblin C, Sullivan SA, White O, Yu Y, Zafar N, Zhou L, Fraser CM. 2004. Structural flexibility in the Burkholderia mallei genome. Proc. Natl. Acad. Sci. U. S. A. 101:14246–14251. 10.1073/pnas.0403306101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Sharrer GT. 1995. The great glanders epidemic, 1861–1866: a civil war legacy. Agric. Hist. 69:79–97. [PubMed] [Google Scholar]
  • 5. Christopher LW, Cieslak LJ, Pavlin JA, Eitzen EM., Jr 1997. Biological warfare: a historical perspective. JAMA 278:412–417. 10.1001/jama.1997.03550050074036. [DOI] [PubMed] [Google Scholar]
  • 6. Bennett S. 2004. Solexa Ltd. Pharmacogenomics 5:433–438. 10.1517/14622416.5.4.433. [DOI] [PubMed] [Google Scholar]
  • 7. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. 10.1038/nature03959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, deWinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. 10.1126/science.1162986. [DOI] [PubMed] [Google Scholar]
  • 9. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, Nusbaum C, Jaffe DB. 2008. ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res. 18:810–820. 10.1101/gr.7337908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10:563–569. 10.1038/nmeth.2474. [DOI] [PubMed] [Google Scholar]
  • 11. Ewing B, Green P. 1998. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res. 8:186–194. [PubMed] [Google Scholar]
  • 12. Ewing B, Hillier L, Wendl MC, Green P. 1998. Base-calling of automated sequencer traces Using Phred. I. Accuracy assessment. Genome Res. 8:175–185. 10.1101/gr.8.3.175. [DOI] [PubMed] [Google Scholar]
  • 13. Gordon D, Green P. 2013. Consed: a graphical editor for next-generation sequencing. Bioinformatics 29:2936–2937. 10.1093/bioinformatics/btt515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Hemmerich C, Buechlein A, Podicheti R, Revanna KV, Dong Q. 2010. An Ergatis-based prokaryotic genome annotation Web server. Bioinformatics 26:1122–1124. 10.1093/bioinformatics/btq090. [DOI] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES