Abstract
Human and rat placental homogenates convert L-thyroxine (T4) to 3,5,3'-L-triiodothyronine (T3) via a pathway termed type II iodothyronine deiodination. To study regulation of this pathway, cell dispersions were prepared from human placental chorionic-decidual membrane. Dispersed cells deiodinated T4 and 3,3',5'-triiodothyronine (rT3), but not T3, at the 5' position. The reaction was only slightly inhibited by 1 mM 6-n-propylthiouracil, enhanced by dithiothreitol, and substantially inhibited by 50 nM iopanoic acid. Incubation of the cells in thyroid hormone-depleted medium induced a near doubling of T4 5'-deiodination in 36-48 h, with a significant rise seen as early as 12 h. Addition of T4, rT3, or T3 to hormone-depleted medium impaired the rise in type II deiodination in a dose-dependent fashion. T4 and rT3 were equipotent in this regard, and T3 was 2-3 times less potent. T4 was effective in physiological concentrations, 6.5-13 nM in medium containing 10% calf serum, and the effect of T4 was not due to its conversion to either T3 or rT3. In cells with deiodinase activity raised by 48 h incubation in thyroid hormone-depleted medium, addition of T4, T3, or rT3 reversed the increase in 8-24 h. Secretion of prolactin and beta hCG by the dispersed cells was not substantially affected by thyroid hormone deprivation. The increase in type II deiodination during thyroid hormone deprivation appears to depend on a signal from the thyroxine molecule, per se, and could potentially defend intracellular, and/or circulating, T3 pools in pathological states of mild-to-moderate hypothyroxinemia.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOURNE G. The foetal membranes. A review of the anatomy of normal amnion and chorion and some aspects of their function. Postgrad Med J. 1962 Apr;38:193–201. doi: 10.1136/pgmj.38.438.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banovac K., Bzik L., Tislarić D., Sekso M. Conversion of thyroxine to triiodothyronine and reverse triiodothyronine in human placenta and fetal membranes. Horm Res. 1980;12(5):253–259. doi: 10.1159/000179128. [DOI] [PubMed] [Google Scholar]
- Bellabarba D., Peterson R. E., Sterling K. An improved method for chromatography of iodothyronines. J Clin Endocrinol Metab. 1968 Feb;28(2):305–307. doi: 10.1210/jcem-28-2-305. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cheron R. G., Kaplan M. M., Larsen P. R. Physiological and pharmacological influences on thyroxine to 3,5,3'-triiodothyronine conversion and nuclear 3,5,3'-triiodothyronine binding in rat anterior pituitary. J Clin Invest. 1979 Nov;64(5):1402–1414. doi: 10.1172/JCI109598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dratman M. B., Crutchfield F. L., Gordon J. T., Jennings A. S. Iodothyronine homeostasis in rat brain during hypo- and hyperthyroidism. Am J Physiol. 1983 Aug;245(2):E185–E193. doi: 10.1152/ajpendo.1983.245.2.E185. [DOI] [PubMed] [Google Scholar]
- Fischer H. R., Hackeng W. H., Schopman W., Silberbusch J. Analysis of factors in hyperthyroidism, which determine the duration of suppressive treatment before recovery of thyroid stimulating hormone secretion. Clin Endocrinol (Oxf) 1982 Jun;16(6):575–585. doi: 10.1111/j.1365-2265.1982.tb03174.x. [DOI] [PubMed] [Google Scholar]
- Fisher D. A., Klein A. H. Thyroid development and disorders of thyroid function in the newborn. N Engl J Med. 1981 Mar 19;304(12):702–712. doi: 10.1056/NEJM198103193041205. [DOI] [PubMed] [Google Scholar]
- GRINBERG R., VOLPERT E. M., WERNER S. C. In vivo deiodination of labeled L-thyroxine to L-3,5,3'-triiodothyronine in mouse and human pituitaries. J Clin Endocrinol Metab. 1963 Feb;23:140–142. doi: 10.1210/jcem-23-2-140. [DOI] [PubMed] [Google Scholar]
- Golander A., Barrett J., Hurley T., Barry S., Handwerger S. Failure of bromocriptine, dopamine, and thyrotropin-releasing hormone to affect prolactin secretion by human decidual tissue in vitro. J Clin Endocrinol Metab. 1979 Nov;49(5):787–789. doi: 10.1210/jcem-49-5-787. [DOI] [PubMed] [Google Scholar]
- Golander A., Hurley T., Barrett J., Handwerger S. Synthesis of prolactin by human decidua in vitro. J Endocrinol. 1979 Aug;82(2):263–267. doi: 10.1677/joe.0.0820263. [DOI] [PubMed] [Google Scholar]
- Golander A., Hurley T., Barrett J., Hizi A., Handwerger S. Prolactin synthesis by human chorion-decidual tissue: a possible source of prolactin in the amniotic fluid. Science. 1978 Oct 20;202(4365):311–313. doi: 10.1126/science.694535. [DOI] [PubMed] [Google Scholar]
- Golde D. W., Bersch N., Chopra I. J., Cline M. J. Thyroid hormones stimulate erythropoiesis in vitro. Br J Haematol. 1977 Oct;37(2):173–177. doi: 10.1111/j.1365-2141.1977.tb06833.x. [DOI] [PubMed] [Google Scholar]
- Goswami A., Rosenberg I. N. Iodothyronine 5'-deiodinase in rat kidney microsomes. Kinetic behavior at low substrate concentrations. J Clin Invest. 1984 Dec;74(6):2097–2106. doi: 10.1172/JCI111634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan M. M., Shaw E. A. Type II iodothyronine 5'-deiodination by human and rat placenta in vitro. J Clin Endocrinol Metab. 1984 Aug;59(2):253–257. doi: 10.1210/jcem-59-2-253. [DOI] [PubMed] [Google Scholar]
- Kaplan M. M. The role of thyroid hormone deiodination in the regulation of hypothalamo-pituitary function. Neuroendocrinology. 1984 Mar;38(3):254–260. doi: 10.1159/000123900. [DOI] [PubMed] [Google Scholar]
- Kaplan M. M., Yaskoski K. A. Phenolic and tyrosyl ring deiodination of iodothyronines in rat brain homogenates. J Clin Invest. 1980 Sep;66(3):551–562. doi: 10.1172/JCI109887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leonard J. L., Kaplan M. M., Visser T. J., Silva J. E., Larsen P. R. Cerebral cortex responds rapidly to thyroid hormones. Science. 1981 Oct 30;214(4520):571–573. doi: 10.1126/science.7291997. [DOI] [PubMed] [Google Scholar]
- Leonard J. L., Larsen P. R. Thyroid hormone metabolism in primary cultures of fetal rat brain cells. Brain Res. 1985 Feb 18;327(1-2):1–13. doi: 10.1016/0006-8993(85)91493-3. [DOI] [PubMed] [Google Scholar]
- Leonard J. L., Mellen S. A., Larsen P. R. Thyroxine 5'-deiodinase activity in brown adipose tissue. Endocrinology. 1983 Mar;112(3):1153–1155. doi: 10.1210/endo-112-3-1153. [DOI] [PubMed] [Google Scholar]
- Leonard J. L., Rosenberg I. N. Iodothyronine 5'-deiodinase from rat kidney: substrate specificity and the 5'-deiodination of reverse triiodothyronine. Endocrinology. 1980 Nov;107(5):1376–1383. doi: 10.1210/endo-107-5-1376. [DOI] [PubMed] [Google Scholar]
- Leonard J. L., Silva J. E., Kaplan M. M., Mellen S. A., Visser T. J., Larsen P. R. Acute posttranscriptional regulation of cerebrocortical and pituitary iodothyronine 5'-deiodinases by thyroid hormone. Endocrinology. 1984 Mar;114(3):998–1004. doi: 10.1210/endo-114-3-998. [DOI] [PubMed] [Google Scholar]
- Lum S. M., Nicoloff J. T., Spencer C. A., Kaptein E. M. Peripheral tissue mechanism for maintenance of serum triiodothyronine values in a thyroxine-deficient state in man. J Clin Invest. 1984 Feb;73(2):570–575. doi: 10.1172/JCI111245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MIDGLEY A. R., Jr, PIERCE G. B., Jr Immunohistochemical localization of human chorionic gonadotropin. J Exp Med. 1962 Feb 1;115:289–294. doi: 10.1084/jem.115.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeda M., Ingbar S. H. Effect of alterations in thyroid status on the metabolism of thyroxine and triiodothyronine by rat pituitary gland in vitro. J Clin Invest. 1982 Apr;69(4):799–808. doi: 10.1172/JCI110519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeda M., Ingbar S. H. Evidence that the 5'-monodeiodinases for thyroxine and 3,3',5'-triiodothyronine in the rat pituitary are separate enzymes. Endocrinology. 1984 Mar;114(3):747–752. doi: 10.1210/endo-114-3-747. [DOI] [PubMed] [Google Scholar]
- Mundy G. R., Shapiro J. L., Bandelin J. G., Canalis E. M., Raisz L. G. Direct stimulation of bone resorption by thyroid hormones. J Clin Invest. 1976 Sep;58(3):529–534. doi: 10.1172/JCI108497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papavasiliou S. S., Martial J. A., Latham K. R., Baxter J. D. Thyroid hormonelike actions of 3,3',5'-L-triiodothyronine nad 3,3'-diiodothyronine. J Clin Invest. 1977 Dec;60(6):1230–1239. doi: 10.1172/JCI108882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riddick D. H., Luciano A. A., Kusmik W. F., Maslar I. A. De novo synthesis of prolactin by human decidua. Life Sci. 1978 Nov 9;23(19):1913–1921. doi: 10.1016/0024-3205(78)90557-x. [DOI] [PubMed] [Google Scholar]
- Samuels H. H., Stanley F., Casanova J. Depletion of L-3,5,3'-triiodothyronine and L-thyroxine in euthyroid calf serum for use in cell culture studies of the action of thyroid hormone. Endocrinology. 1979 Jul;105(1):80–85. doi: 10.1210/endo-105-1-80. [DOI] [PubMed] [Google Scholar]
- Silva J. E., Gordon M. B., Crantz F. R., Leonard J. L., Larsen P. R. Qualitative and quantitative differences in the pathways of extrathyroidal triiodothyronine generation between euthyroid and hypothyroid rats. J Clin Invest. 1984 Apr;73(4):898–907. doi: 10.1172/JCI111313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silva J. E., Leonard J. L. Regulation of rat cerebrocortical and adenohypophyseal type II 5'-deiodinase by thyroxine, triiodothyronine, and reverse triiodothyronine. Endocrinology. 1985 Apr;116(4):1627–1635. doi: 10.1210/endo-116-4-1627. [DOI] [PubMed] [Google Scholar]
- Silva J. E., Matthews P. Thyroid hormone metabolism and the source of plasma triiodothyronine in 2-week-old rats: effects of thyroid status. Endocrinology. 1984 Jun;114(6):2394–2405. doi: 10.1210/endo-114-6-2394. [DOI] [PubMed] [Google Scholar]
- Visser T. J., Kaplan M. M., Leonard J. L., Larsen P. R. Evidence for two pathways of iodothyronine 5'-deiodination in rat pituitary that differ in kinetics, propylthiouracil sensitivity, and response to hypothyroidism. J Clin Invest. 1983 Apr;71(4):992–1002. doi: 10.1172/JCI110854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser T. J., Leonard J. L., Kaplan M. M., Larsen P. R. Kinetic evidence suggesting two mechanisms for iodothyronine 5'-deiodination in rat cerebral cortex. Proc Natl Acad Sci U S A. 1982 Aug;79(16):5080–5084. doi: 10.1073/pnas.79.16.5080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weeke J., Orskov H. Synthesis of 125I monolabelled 3, 5, 3'-triiodothyronine and thyroxine of maximum specific activity for radioimmunoassay. Scand J Clin Lab Invest. 1973 Dec;32(4):357–360. doi: 10.3109/00365517309084359. [DOI] [PubMed] [Google Scholar]
- Zimmerman C. J., Izumi M., Larsen P. R. Isolation of labeled triiodothyronine from serum using affinity chromatography: application to the extimation of the peripheral T4 to T3 conversion in rats. Metabolism. 1978 Mar;27(3):303–313. doi: 10.1016/0026-0495(78)90110-5. [DOI] [PubMed] [Google Scholar]
- van Doorn J., Roelfsema F., van der Heide D. Contribution fron local conversion of thyroxine to 3,5,3'-triiodothyronine to intracellular 3,5,3'-triiodothyronine in several organs in hypothyroid rats at isotope equilibrium. Acta Endocrinol (Copenh) 1982 Nov;101(3):386–396. doi: 10.1530/acta.0.1010386. [DOI] [PubMed] [Google Scholar]
