Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Sep;76(3):1019–1024. doi: 10.1172/JCI112054

Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances.

J P Flatt, E Ravussin, K J Acheson, E Jéquier
PMCID: PMC423974  PMID: 3900133

Abstract

To study the effect of dietary fat on postprandial substrate utilization and nutrient balance, respiratory exchange was determined in seven young men for 1 h before and 9 h after the ingestion of one of three different breakfasts: i.e., bread, jam, and dried meat (482 kcal: 27% protein, 62% carbohydrate, and 11% fat); bread, jam, and dried meat plus 50 g of margarine containing long-chain triglycerides (LCT); or bread, jam, and dried meat plus 40 g medium-chain triglycerides (MCT) and 10 g LCT margarine (858 kcal: 15% protein, 35% carbohydrate, and 50% fat). Plasma glucose concentrations peaked 45 min after the start of the meals. When compared with the low fat meal, the LCT margarine supplement had no effect at any time on circulating glucose and insulin concentrations, nor on the respiratory quotient. When MCTs were consumed, plasma glucose and insulin concentrations remained lower and plasma FFA concentrations higher during the first 2 h. 9 h after the breakfasts, the amounts of substrates oxidized were similar in each case, i.e., approximately 320, 355, and 125 kcal for carbohydrate, fat, and protein, respectively. This resulted in comparable carbohydrate (mean +/- SD = -22 +/- 32, -22 +/- 37, and -24 +/- 22 kcal) and protein balances (-7 +/- 9, +7 +/- 7, and -8 +/- 11 kcal) after the low fat, LCT- and MCT-supplemented test meals, respectively. However, after the low fat meal, the lipid balance was negative (-287 +/- 60 kcal), which differed significantly (P less than 0.001) from the fat balances after the LCT- and MCT-supplemented meals, i.e., +60 +/- 33 and +57 +/- 25 kcal, respectively. The results demonstrate that the rates of fat and of carbohydrate oxidation are not influenced by the fat content of a meal.

Full text

PDF
1019

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acheson K. J., Flatt J. P., Jéquier E. Glycogen synthesis versus lipogenesis after a 500 gram carbohydrate meal in man. Metabolism. 1982 Dec;31(12):1234–1240. doi: 10.1016/0026-0495(82)90010-5. [DOI] [PubMed] [Google Scholar]
  2. Acheson K. J., Schutz Y., Bessard T., Ravussin E., Jéquier E., Flatt J. P. Nutritional influences on lipogenesis and thermogenesis after a carbohydrate meal. Am J Physiol. 1984 Jan;246(1 Pt 1):E62–E70. doi: 10.1152/ajpendo.1984.246.1.E62. [DOI] [PubMed] [Google Scholar]
  3. BIERMAN E. L., GORDIS E., HAMLIN J. T., 3rd Heterogeneity of fat particles in plasma during alimentary lipemia. J Clin Invest. 1962 Dec;41:2254–2260. doi: 10.1172/JCI104684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BLOOM B., CHAIKOFF I. L., REINHARDT Intestinal lymph as pathway for transport of absorbed fatty acids of different chain lengths. Am J Physiol. 1951 Aug;166(2):451–455. doi: 10.1152/ajplegacy.1951.166.2.451. [DOI] [PubMed] [Google Scholar]
  5. Baba N., Bracco E. F., Hashim S. A. Enhanced thermogenesis and diminished deposition of fat in response to overfeeding with diet containing medium chain triglyceride. Am J Clin Nutr. 1982 Apr;35(4):678–682. doi: 10.1093/ajcn/35.4.678. [DOI] [PubMed] [Google Scholar]
  6. Bach A. C., Babayan V. K. Medium-chain triglycerides: an update. Am J Clin Nutr. 1982 Nov;36(5):950–962. doi: 10.1093/ajcn/36.5.950. [DOI] [PubMed] [Google Scholar]
  7. Bergström J., Hermansen L., Hultman E., Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967 Oct-Nov;71(2):140–150. doi: 10.1111/j.1748-1716.1967.tb03720.x. [DOI] [PubMed] [Google Scholar]
  8. Cahill G. F., Jr The Banting Memorial Lecture 1971. Physiology of insulin in man. Diabetes. 1971 Dec;20(12):785–799. doi: 10.2337/diab.20.12.785. [DOI] [PubMed] [Google Scholar]
  9. DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
  10. Durnin J. V., Rahaman M. M. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967 Aug;21(3):681–689. doi: 10.1079/bjn19670070. [DOI] [PubMed] [Google Scholar]
  11. Ebiner J. R., Acheson K. J., Doerner A., Maeder E., Arnaud M. J., Jéquier E., Felber J. P. Comparison of carbohydrate utilization in man using indirect calorimetry and mass spectrometry after an oral load of 100 g naturally-labelled [13C]glucose. Br J Nutr. 1979 May;41(3):419–429. doi: 10.1079/bjn19790057. [DOI] [PubMed] [Google Scholar]
  12. Garlick P. J., Clugston G. A., Swick R. W., Waterlow J. C. Diurnal pattern of protein and energy metabolism in man. Am J Clin Nutr. 1980 Sep;33(9):1983–1986. doi: 10.1093/ajcn/33.9.1983. [DOI] [PubMed] [Google Scholar]
  13. Hallman H., Farnebo L. O., Hamberger B., Johnsson G. A sensitive method for the determination of plasma catecholamines using liquid chromatography with electrochemical detection. Life Sci. 1978 Sep 11;23(10):1049–1052. doi: 10.1016/0024-3205(78)90665-3. [DOI] [PubMed] [Google Scholar]
  14. Heindel J. J., Cushman S. W., Jeanrenaud B. Cell-associated fatty acid levels and energy-requiring processes in mouse adipocytes. Am J Physiol. 1974 Jan;226(1):16–24. doi: 10.1152/ajplegacy.1974.226.1.16. [DOI] [PubMed] [Google Scholar]
  15. Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
  16. Hjemdahl P., Daleskog M., Kahan T. Determination of plasma catecholamines by high performance liquid chromatography with electrochemical detection: comparison with a radioenzymatic method. Life Sci. 1979 Jul 9;25(2):131–138. doi: 10.1016/0024-3205(79)90384-9. [DOI] [PubMed] [Google Scholar]
  17. Leveille G. A., Pardini R. S., Tillotson J. A. Influence of medium-chain triglycerides on lipid metabolism in the rat. Lipids. 1967 Jul;2(4):287–294. doi: 10.1007/BF02532113. [DOI] [PubMed] [Google Scholar]
  18. Ravussin E., Doerner A., Acheson K. J., Pahud P., Arnaud M. J., Jéquier E. Carbohydrate utilization in obese subjects after an oral load of 100 g naturally-labelled [13C] glucose. Br J Nutr. 1980 Mar;43(2):281–288. doi: 10.1079/bjn19800091. [DOI] [PubMed] [Google Scholar]
  19. Ravussin E., Pahud P., Dörner A., Arnaud M. J., Jéquier E. Substrate utilization during prolonged exercise preceded by ingestion of 13C-glucose in glycogen depleted and control subjects. Pflugers Arch. 1979 Nov;382(3):197–202. doi: 10.1007/BF00583702. [DOI] [PubMed] [Google Scholar]
  20. Spector A. A. Fatty acid binding to plasma albumin. J Lipid Res. 1975 May;16(3):165–179. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES