Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Sep;76(3):1025–1031. doi: 10.1172/JCI112055

Role of renal metabolism and excretion in 5-nitrofuran-induced uroepithelial cancer in the rat.

L A Spry, T V Zenser, S M Cohen, B B Davis
PMCID: PMC423976  PMID: 4044826

Abstract

5-Nitrofurans have been used in the study of chemical carcinogenesis. There is substantial evidence that N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide (FANFT) is deformylated to 2-amino-4-(5-nitro-2-furyl)thiazole (ANFT) in the process of FANFT-induced bladder cancer. Paradoxically, ANFT is less potent as a uroepithelial carcinogen than FANFT when fed to rats. Feeding aspirin with FANFT to rats decreases the incidence of bladder cancer. Isolated kidneys were perfused with 5-nitrofurans to determine renal clearances and whether aspirin acts to decrease urinary excretion of the carcinogen. In FANFT-perfused kidneys, FANFT was deformylated to ANFT and excreted (1.06 +/- 0.22 nmol/min) at a rate eightfold higher than excretion of FANFT. In kidneys perfused with equimolar ANFT, excretion of ANFT was 0.25 +/- 0.05 nmol/min, which suggests a coupling of renal deformylation of FANFT to excretion of ANFT in FANFT-perfused kidneys. Neither aspirin nor probenecid altered the urinary excretion or half-life of FANFT or ANFT. In rats fed 0.2% FANFT as part of their diet, coadministration of aspirin (0.5%) increased urinary excretion of ANFT during a 12-wk feeding study, which suggests decreased tissue binding or metabolism of ANFT. Kidney perfusion with acetylated ANFT (NFTA), a much less potent uroepithelial carcinogen, resulted in no ANFT excretion or accumulation, which indicates the specificity of renal deformylase. Renal deformylase activity was found in broken cell preparations of rat and human kidney. These data describe a unique renal metabolic/excretory coupling for these compounds that appears to explain the differential carcinogenic potential of the 5-nitrofurans tested. These results are consistent with the hypothesis that aspirin decreases activation of ANFT by inhibiting prostaglandin H synthase.

Full text

PDF
1025

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J., Kopko F., Nohle E. G., Siedler A. J. Intracellular accumulation of nitrofurantoin by rabbit renal cortical slices. Am J Physiol. 1969 Nov;217(5):1435–1440. doi: 10.1152/ajplegacy.1969.217.5.1435. [DOI] [PubMed] [Google Scholar]
  2. Augusteyn R. C., de Jersey J., Webb E. C., Zerner B. On the homology of the active-site peptides of liver carboxylesterases. Biochim Biophys Acta. 1969 Jan 7;171(1):128–137. doi: 10.1016/0005-2744(69)90112-0. [DOI] [PubMed] [Google Scholar]
  3. Bekersky I. Use of the isolated perfused kidney as a tool in drug disposition studies. Drug Metab Rev. 1983;14(5):931–960. doi: 10.3109/03602538308991417. [DOI] [PubMed] [Google Scholar]
  4. Elfarra A. A., Anders M. W. Renal processing of glutathione conjugates. Role in nephrotoxicity. Biochem Pharmacol. 1984 Dec 1;33(23):3729–3732. doi: 10.1016/0006-2952(84)90032-7. [DOI] [PubMed] [Google Scholar]
  5. Epstein F. H., Brosnan J. T., Tange J. D., Ross B. D. Improved function with amino acids in the isolated perfused kidney. Am J Physiol. 1982 Sep;243(3):F284–F292. doi: 10.1152/ajprenal.1982.243.3.F284. [DOI] [PubMed] [Google Scholar]
  6. Hassall C. D., Gandolfi A. J., Brendel K. Correlation of the in vivo and in vitro renal toxicity of S-(1,2-dichlorovinyl)-L-cysteine. Drug Chem Toxicol. 1983;6(6):507–520. doi: 10.3109/01480548309017806. [DOI] [PubMed] [Google Scholar]
  7. La Du B. N., Eckerson H. W. The polymorphic paraoxonase/arylesterase isozymes of human serum. Fed Proc. 1984 May 15;43(8):2338–2341. [PubMed] [Google Scholar]
  8. Lock E. A., Ishmael J., Hook J. B. Nephrotoxicity of hexachloro-1,3-butadiene in the mouse: the effect of age, sex, strain, monooxygenase modifiers, and the role of glutathione. Toxicol Appl Pharmacol. 1984 Mar 15;72(3):484–494. doi: 10.1016/0041-008x(84)90125-x. [DOI] [PubMed] [Google Scholar]
  9. Mattammal M. B., Zenser T. V., Davis B. B. Anaerobic metabolism and nuclear binding of the carcinogen 2-amino-4-(5-nitro-2-furyl)thiazole (ANFT). Carcinogenesis. 1982;3(11):1339–1344. doi: 10.1093/carcin/3.11.1339. [DOI] [PubMed] [Google Scholar]
  10. Mattammal M. B., Zenser T. V., Davis B. B. Prostaglandin hydroperoxidase-mediated 2-amino-4-(5-nitro-2-furyl) [14C]thiazole metabolism and nucleic acid binding. Cancer Res. 1981 Dec;41(12 Pt 1):4961–4966. [PubMed] [Google Scholar]
  11. McCalla D. R., Reuvers A., Kaiser C. Mode of action of nitrofurazone. J Bacteriol. 1970 Dec;104(3):1126–1134. doi: 10.1128/jb.104.3.1126-1134.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mohandas J., Marshall J. J., Duggin G. G., Horvath J. S., Tiller D. J. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem Pharmacol. 1984 Jun 1;33(11):1801–1807. doi: 10.1016/0006-2952(84)90353-8. [DOI] [PubMed] [Google Scholar]
  13. Murasaki G., Zenser T. V., Davis B. B., Cohen S. M. Inhibition by aspirin of N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide-induced bladder carcinogenesis and enhancement of forestomach carcinogenesis. Carcinogenesis. 1984 Jan;5(1):53–55. doi: 10.1093/carcin/5.1.53. [DOI] [PubMed] [Google Scholar]
  14. Newton J. F., Braselton W. E., Jr, Kuo C. H., Kluwe W. M., Gemborys M. W., Mudge G. H., Mudge G. H., Hook J. B. Metabolism of acetaminophen by the isolated perfused kidney. J Pharmacol Exp Ther. 1982 Apr;221(1):76–79. [PubMed] [Google Scholar]
  15. OWEN J. A., IGGO B., SCANDRETT F. J., STEWART C. P. The determination of creatinine in plasma or serum, and in urine; a critical examination. Biochem J. 1954 Nov;58(3):426–437. doi: 10.1042/bj0580426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olive P. L., McCalla D. R. Cytotoxicity and DNA damage to mammalian cells by nitrofurans. Chem Biol Interact. 1977 Feb;16(2):223–233. doi: 10.1016/0009-2797(77)90131-4. [DOI] [PubMed] [Google Scholar]
  17. Rapp N. S., Zenser T. V., Brown W. W., Davis B. B. Metabolism of benzidine by a prostaglandin-mediated process in renal inner medullary slices. J Pharmacol Exp Ther. 1980 Nov;215(2):401–406. [PubMed] [Google Scholar]
  18. Reidenberg M. M. The biotransformation of drugs in renal failure. Am J Med. 1977 Apr;62(4):482–485. doi: 10.1016/0002-9343(77)90401-6. [DOI] [PubMed] [Google Scholar]
  19. Ross B. D. The isolated perfused rat kidney. Clin Sci Mol Med Suppl. 1978 Dec;55(6):513–521. doi: 10.1042/cs0550513. [DOI] [PubMed] [Google Scholar]
  20. Roth G. J., Siok C. J. Acetylation of the NH2-terminal serine of prostaglandin synthetase by aspirin. J Biol Chem. 1978 Jun 10;253(11):3782–3784. [PubMed] [Google Scholar]
  21. Rush G. F., Newton J. F., Hook J. B. Sex differences in the excretion of glucuronide conjugates: the role of intrarenal glucuronidation. J Pharmacol Exp Ther. 1983 Dec;227(3):658–662. [PubMed] [Google Scholar]
  22. Suzuki H., Nakane H., Kawamura M., Yoshizawa M., Takeshita E., Saruta T. Excretion and metabolism of dopa and dopamine by isolated perfused rat kidney. Am J Physiol. 1984 Sep;247(3 Pt 1):E285–E290. doi: 10.1152/ajpendo.1984.247.3.E285. [DOI] [PubMed] [Google Scholar]
  23. Wang C. Y., Behrens B. C., Ichikawa M., Bryan G. T. Nitroreduction of 5-nitrofuran derivatives by rat liver xanthine oxidase and reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase. Biochem Pharmacol. 1974 Dec 15;23(24):3395–3404. doi: 10.1016/0006-2952(74)90342-6. [DOI] [PubMed] [Google Scholar]
  24. Wang C. Y., Bryan G. T. Deacylation of carcinogenic 5-nitrofuran derivatives by mammalian tissues. Chem Biol Interact. 1974 Dec;9(6):423–428. doi: 10.1016/0009-2797(74)90023-4. [DOI] [PubMed] [Google Scholar]
  25. Wang C. Y., Kamiryo Y., Croft W. A. Carcinogenicity of 2-amino-4-(5-nitro-2-furyl) thiazole in rats by oral and subcutaneous administration. Carcinogenesis. 1982;3(3):275–277. doi: 10.1093/carcin/3.3.275. [DOI] [PubMed] [Google Scholar]
  26. Wang C. Y., Lee L. H. Mutagenic activity of carcinogenic and noncarcinogenic nitrofurans and of urine of rats fed these compounds. Chem Biol Interact. 1976 Sep;15(1):69–75. doi: 10.1016/0009-2797(76)90129-0. [DOI] [PubMed] [Google Scholar]
  27. YU T. F., GUTMAN A. B. Paradoxical retention of uric acid by uricosuric drugs in low dosage. Proc Soc Exp Biol Med. 1955 Nov;90(2):542–547. doi: 10.3181/00379727-90-22094. [DOI] [PubMed] [Google Scholar]
  28. Zenser T. V., Balasubramanian T. M., Mattammal M. B., Davis B. B. Transport of the renal carcinogen 3-hydroxymethyl-1-([3-(5-nitro-2-furyl)allydidene]amino) hydantoin by renal cortex and cooxidative metabolism by prostaglandin endoperoxide synthetase. Cancer Res. 1981 Jun;41(6):2032–2037. [PubMed] [Google Scholar]
  29. Zenser T. V., Davis B. B. Enzyme systems involved in the formation of reactive metabolites in the renal medulla: cooxidation via prostaglandin H synthase. Fundam Appl Toxicol. 1984 Dec;4(6):922–929. doi: 10.1016/0272-0590(84)90230-6. [DOI] [PubMed] [Google Scholar]
  30. Zenser T. V., Mattammal M. B., Wise R. W., Rice J. R., Davis B. B. Prostaglandin H synthase-catalyzed activation of benzidine: a model to assess pharmacologic intervention of the initiation of chemical carcinogenesis. J Pharmacol Exp Ther. 1983 Dec;227(3):545–550. [PubMed] [Google Scholar]
  31. Zenser T. V., Palmier M. O., Mattammal M. B., Davis B. B. Metabolic activation of the carcinogen N-[4-(5-nitro-2-furyl)-2-thiazolyl]acetamide by prostaglandin H synthase. Carcinogenesis. 1984 Oct;5(10):1225–1230. doi: 10.1093/carcin/5.10.1225. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES