Abstract
We examined the role of reactive oxygen metabolites in the degradation of human glomerular basement membrane (GBM) by stimulated human neutrophils. Neutrophils stimulated with phorbol myristate acetate (PMA) caused a significant degradation of GBM over 3 h resulting in 11.4 +/- 0.9% (SEM), n = 11 release of hydroxyproline compared with 0.3 +/- 0.09%, n = 11 release by unstimulated neutrophils. Superoxide dismutase, a scavenger of superoxide, did not inhibit the GBM degradation, whereas catalase, a scavenger of hydrogen peroxide, caused a marked inhibition (-60 +/- 7%, n = 4, P less than 0.001) of hydroxyproline release. Neither alpha-1 proteinase inhibitor, an inhibitor of elastase, nor soya bean trypsin inhibitor, an inhibitor of cathepsin G, caused any significant inhibition of GBM degradation. GBM degradation by cell-free supernatants obtained from stimulated neutrophils was markedly impaired in the presence of metal chelators EDTA (-72 +/- 7, n = 6, P less than 0.001) and 1,10,phenanthroline (-85 +/- 5%, n = 3, P less than 0.001). Considering these results, we postulated that reactive oxygen metabolites generated by the stimulated neutrophils activate a latent GBM degrading metalloproteinase(s). GBM degradation by supernatants obtained from incubations with catalase, azide, an inhibitor of myeloperoxidase, and methionine and taurine, scavengers of hypochlorous acid, was markedly reduced. Our data thus indicate that degradation of the GBM by PMA-stimulated neutrophils is due to activation of a latent metalloproteinase by hypochlorous acid or a similar oxidant generated by the myeloperoxidase-hydrogen peroxide-halide system.
Full text
PDF![25](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d2/423977/f3aa00b37d07/jcinvest00112-0037.png)
![26](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d2/423977/4ba82a19a7f5/jcinvest00112-0038.png)
![27](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d2/423977/4ac653f38e7b/jcinvest00112-0039.png)
![28](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d2/423977/750bbab5ee95/jcinvest00112-0040.png)
![29](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d2/423977/ded57e799e26/jcinvest00112-0041.png)
![30](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d2/423977/464ac4ebf913/jcinvest00112-0042.png)
![31](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d2/423977/2f69567e9da7/jcinvest00112-0043.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blau E., Michael A. F. Rat glomerular basement membrane composition and metabolism in aminonucleoside nephrosis. J Lab Clin Med. 1971 Jan;77(1):97–109. [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Carp H., Janoff A. Potential mediator of inflammation. Phagocyte-derived oxidants suppress the elastase-inhibitory capacity of alpha 1-proteinase inhibitor in vitro. J Clin Invest. 1980 Nov;66(5):987–995. doi: 10.1172/JCI109968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies M., Barrett A. J., Travis J., Sanders E., Coles G. A. The degradation of human glomerular basement membrane with purified lysosomal proteinases: evidence for the pathogenic role of the polymorphonuclear leucocyte in glomerulonephritis. Clin Sci Mol Med. 1978 Mar;54(3):233–240. doi: 10.1042/cs0540233. [DOI] [PubMed] [Google Scholar]
- Dewald B., Bretz U., Baggiolini M. Release of gelatinase from a novel secretory compartment of human neutrophils. J Clin Invest. 1982 Sep;70(3):518–525. doi: 10.1172/JCI110643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fantone J. C., Ward P. A. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol. 1982 Jun;107(3):395–418. [PMC free article] [PubMed] [Google Scholar]
- Ferrario F., Castiglione A., Colasanti G., Barbiano di Belgioioso G., Bertoli S., D'Amico G. The detection of monocytes in human glomerulonephritis. Kidney Int. 1985 Sep;28(3):513–519. doi: 10.1038/ki.1985.158. [DOI] [PubMed] [Google Scholar]
- Hawkins D., Cochrane C. G. Glomerular basement membrane damage in immunological glomerulonephritis. Immunology. 1968 May;14(5):665–681. [PMC free article] [PubMed] [Google Scholar]
- Hibbs M. S., Hasty K. A., Seyer J. M., Kang A. H., Mainardi C. L. Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J Biol Chem. 1985 Feb 25;260(4):2493–2500. [PubMed] [Google Scholar]
- Holdsworth S. R., Neale T. J., Wilson C. B. Abrogation of macrophage-dependent injury in experimental glomerulonephritis in the rabbit. Use of an antimacrophage serum. J Clin Invest. 1981 Sep;68(3):686–698. doi: 10.1172/JCI110304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janoff A., Scherer J. Mediators of inflammation in leukocyte lysosomes. IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes. J Exp Med. 1968 Nov 1;128(5):1137–1155. doi: 10.1084/jem.128.5.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalebic T., Garbisa S., Glaser B., Liotta L. A. Basement membrane collagen: degradation by migrating endothelial cells. Science. 1983 Jul 15;221(4607):281–283. doi: 10.1126/science.6190230. [DOI] [PubMed] [Google Scholar]
- Kammer G. M., Sapolsky A. I., Malemud C. J. Secretion of an articular cartilage proteoglycan-degrading enzyme activity by murine T lymphocytes in vitro. J Clin Invest. 1985 Aug;76(2):395–402. doi: 10.1172/JCI111985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kresina T. F., Miller E. J. Isolation and characterization of basement membrane collagen from human placental tissue. Evidence for the presence of two genetically distinct collagen chains. Biochemistry. 1979 Jul 10;18(14):3089–3097. doi: 10.1021/bi00581a028. [DOI] [PubMed] [Google Scholar]
- Liotta L. A., Goldfarb R. H., Terranova V. P. Cleavage of laminin by thrombin and plasmin: alpha thrombin selectively cleaves the beta chain of laminin. Thromb Res. 1981 Mar 15;21(6):663–673. doi: 10.1016/0049-3848(81)90268-1. [DOI] [PubMed] [Google Scholar]
- Mainardi C. L., Dixit S. N., Kang A. H. Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules. J Biol Chem. 1980 Jun 10;255(11):5435–5441. [PubMed] [Google Scholar]
- Miller E. J., Rhodes R. K. Preparation and characterization of the different types of collagen. Methods Enzymol. 1982;82(Pt A):33–64. doi: 10.1016/0076-6879(82)82059-4. [DOI] [PubMed] [Google Scholar]
- Murphy G., Bretz U., Baggiolini M., Reynolds J. J. The latent collagenase and gelatinase of human polymorphonuclear neutrophil leucocytes. Biochem J. 1980 Nov 15;192(2):517–525. doi: 10.1042/bj1920517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy G., Reynolds J. J., Bretz U., Baggiolini M. Partial purification of collagenase and gelatinase from human polymorphonuclear leucocytes. Analysis of their actions on soluble and insoluble collagens. Biochem J. 1982 Apr 1;203(1):209–221. doi: 10.1042/bj2030209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rehan A., Johnson K. J., Kunkel R. G., Wiggins R. C. Role of oxygen radicals in phorbol myristate acetate-induced glomerular injury. Kidney Int. 1985 Mar;27(3):503–511. doi: 10.1038/ki.1985.39. [DOI] [PubMed] [Google Scholar]
- Rehan A., Johnson K. J., Wiggins R. C., Kunkel R. G., Ward P. A. Evidence for the role of oxygen radicals in acute nephrotoxic nephritis. Lab Invest. 1984 Oct;51(4):396–403. [PubMed] [Google Scholar]
- Ritchey E. E., Wallin J. D., Shah S. V. Chemiluminescence and superoxide anion production by leukocytes from chronic hemodialysis patients. Kidney Int. 1981 Feb;19(2):349–358. doi: 10.1038/ki.1981.26. [DOI] [PubMed] [Google Scholar]
- Sanders E., Coles G. A., Davies M. Lysosomal enzymes in human urine: evidence for polymorphonuclear leucocyte proteinase involvement in the pathogenesis of human glomerulonephritis. Clin Sci Mol Med. 1978 Jun;54(6):667–672. doi: 10.1042/cs0540667. [DOI] [PubMed] [Google Scholar]
- Shah S. V. Effect of enzymatically generated reactive oxygen metabolites on the cyclic nucleotide content in isolated rat glomeruli. J Clin Invest. 1984 Aug;74(2):393–401. doi: 10.1172/JCI111434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tschesche H., Macartney H. W. A new principle of regulation of enzymic activity. Activation and regulation of human polymorphonuclear leukocyte collagenase via disulfide-thiol exchange as catalysed by the glutathione cycle in a peroxidase-coupled reaction to glucose metabolism. Eur J Biochem. 1981 Nov;120(1):183–190. doi: 10.1111/j.1432-1033.1981.tb05687.x. [DOI] [PubMed] [Google Scholar]
- Uitto V. J., Schwartz D., Veis A. Degradation of basement-membrane collagen by neutral proteases from human leukocytes. Eur J Biochem. 1980 Apr;105(2):409–417. doi: 10.1111/j.1432-1033.1980.tb04515.x. [DOI] [PubMed] [Google Scholar]
- Vissers M. C., Winterbourn C. C., Hunt J. S. Degradation of glomerular basement membrane by human neutrophils in vitro. Biochim Biophys Acta. 1984 Jun 19;804(2):154–160. doi: 10.1016/0167-4889(84)90144-7. [DOI] [PubMed] [Google Scholar]
- WOESSNER J. F., Jr The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961 May;93:440–447. doi: 10.1016/0003-9861(61)90291-0. [DOI] [PubMed] [Google Scholar]
- Weiss S. J., Lampert M. B., Test S. T. Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science. 1983 Nov 11;222(4624):625–628. doi: 10.1126/science.6635660. [DOI] [PubMed] [Google Scholar]
- Weiss S. J., LoBuglio A. F. Phagocyte-generated oxygen metabolites and cellular injury. Lab Invest. 1982 Jul;47(1):5–18. [PubMed] [Google Scholar]
- Weiss S. J., Peppin G., Ortiz X., Ragsdale C., Test S. T. Oxidative autoactivation of latent collagenase by human neutrophils. Science. 1985 Feb 15;227(4688):747–749. doi: 10.1126/science.2982211. [DOI] [PubMed] [Google Scholar]
- Weiss S. J., Regiani S. Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites. J Clin Invest. 1984 May;73(5):1297–1303. doi: 10.1172/JCI111332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weissmann G., Smolen J. E., Korchak H. M. Release of inflammatory mediators from stimulated neutrophils. N Engl J Med. 1980 Jul 3;303(1):27–34. doi: 10.1056/NEJM198007033030109. [DOI] [PubMed] [Google Scholar]
- Westberg N. G., Michael A. F. Human glomerular basement membrane. Preparation and composition. Biochemistry. 1970 Sep 15;9(19):3837–3846. doi: 10.1021/bi00821a025. [DOI] [PubMed] [Google Scholar]
- Williams H. R., Lin T. Y. Human polymorphonuclear leukocyte collagenase and gelatinase. Comparison of certain enzymatic properties. Int J Biochem. 1984;16(12):1321–1329. doi: 10.1016/0020-711x(84)90235-0. [DOI] [PubMed] [Google Scholar]