Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Jan;79(1):80–85. doi: 10.1172/JCI112812

Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. An in vitro electrophysiologic analysis.

C U Cotton, M J Stutts, M R Knowles, J T Gatzy, R C Boucher
PMCID: PMC423991  PMID: 3793933

Abstract

The transepithelial chloride permeability of airway and sweat ductal epithelium has been reported to be decreased in patients with cystic fibrosis (CF). In the present study, we investigated whether the airway epithelial defect was in the cell path by characterizing the relative ion permeabilities of the apical membrane of respiratory epithelial cells from CF and normal subjects. Membrane electric potential difference (PD) and the responses to luminal Cl- replacement, isoproterenol, and amiloride were measured with intracellular microelectrodes. The PD across the apical barrier was smaller for CF (-11 mV) than normal (-29 mV) epithelia whereas the PD across the basolateral barrier was similar, (-26 and -34 mV respectively). In contrast to normal nasal epithelium, the apical membrane in CF epithelia was not Cl- permselective and was not responsive to isoproterenol. Amiloride, a selective Na+ channel blocker, induced a larger apical membrane hyperpolarization and a greater increase in transepithelial resistance in CF epithelia. Both reduced apical cell membrane Cl- conductance and increased Na+ conductance appear to contribute to the abnormal function of respiratory epithelia of CF patients.

Full text

PDF
80

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boucher R. C., Stutts M. J., Knowles M. R., Cantley L., Gatzy J. T. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest. 1986 Nov;78(5):1245–1252. doi: 10.1172/JCI112708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHERNICK W. S., BARBERO G. J. Composition of tracheobronchial secretions in cystic fibrosis of the pancreas and bronchiectasis. Pediatrics. 1959 Nov;24:739–745. [PubMed] [Google Scholar]
  3. Knowles M. R., Stutts M. J., Spock A., Fischer N., Gatzy J. T., Boucher R. C. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science. 1983 Sep 9;221(4615):1067–1070. doi: 10.1126/science.6308769. [DOI] [PubMed] [Google Scholar]
  4. Knowles M., Gatzy J., Boucher R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med. 1981 Dec 17;305(25):1489–1495. doi: 10.1056/NEJM198112173052502. [DOI] [PubMed] [Google Scholar]
  5. Knowles M., Gatzy J., Boucher R. Relative ion permeability of normal and cystic fibrosis nasal epithelium. J Clin Invest. 1983 May;71(5):1410–1417. doi: 10.1172/JCI110894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Larsen E. H., Rasmussen B. E. Chloride channels in toad skin. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):413–434. doi: 10.1098/rstb.1982.0141. [DOI] [PubMed] [Google Scholar]
  7. Nagel W., Reinach P. Mechanism of stimulation by epinephrine of active transepithelial Cl transport in isolated frog cornea. J Membr Biol. 1980 Aug 21;56(1):73–79. doi: 10.1007/BF01869354. [DOI] [PubMed] [Google Scholar]
  8. Potter J. L., Matthews L. W., Spector S., Lemm J. Studies on pulmonary secretions. II. Osmolality and the ionic environment of pulmonary secretions from patients with cystic fibrosis, bronchiectasis, and laryngectomy. Am Rev Respir Dis. 1967 Jul;96(1):83–87. doi: 10.1164/arrd.1967.96.1.83. [DOI] [PubMed] [Google Scholar]
  9. Quinton P. M. Chloride impermeability in cystic fibrosis. Nature. 1983 Feb 3;301(5899):421–422. doi: 10.1038/301421a0. [DOI] [PubMed] [Google Scholar]
  10. Reuss L., Reinach P., Weinman S. A., Grady T. P. Intracellular ion activities and Cl-transport mechanisms in bullfrog corneal epithelium. Am J Physiol. 1983 May;244(5):C336–C347. doi: 10.1152/ajpcell.1983.244.5.C336. [DOI] [PubMed] [Google Scholar]
  11. Sato K. Differing luminal potential difference of cystic fibrosis and control sweat secretory coils in vitro. Am J Physiol. 1984 Oct;247(4 Pt 2):R646–R649. doi: 10.1152/ajpregu.1984.247.4.R646. [DOI] [PubMed] [Google Scholar]
  12. Shorofsky S. R., Field M., Fozzard H. A. Electrophysiology of Cl secretion in canine trachea. J Membr Biol. 1983;72(1-2):105–115. doi: 10.1007/BF01870318. [DOI] [PubMed] [Google Scholar]
  13. Stutts M. J., Cotton C. U., Yankaskas J. R., Cheng E., Knowles M. R., Gatzy J. T., Boucher R. C. Chloride uptake into cultured airway epithelial cells from cystic fibrosis patients and normal individuals. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6677–6681. doi: 10.1073/pnas.82.19.6677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Welsh M. J. Intracellular chloride activities in canine tracheal epithelium. Direct evidence for sodium-coupled intracellular chloride accumulation in a chloride-secreting epithelium. J Clin Invest. 1983 May;71(5):1392–1401. doi: 10.1172/JCI110892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Welsh M. J., Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile. J Membr Biol. 1982;70(3):227–238. doi: 10.1007/BF01870565. [DOI] [PubMed] [Google Scholar]
  16. Welsh M. J., Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: III. Membrane resistances and electromotive forces. J Membr Biol. 1983;71(3):209–218. doi: 10.1007/BF01875462. [DOI] [PubMed] [Google Scholar]
  17. Wood R. E., Boat T. F., Doershuk C. F. Cystic fibrosis. Am Rev Respir Dis. 1976 Jun;113(6):833–878. doi: 10.1164/arrd.1976.113.6.833. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES