Abstract
Immunofluorescence staining of buffy coat smears from a patient with chronic myelogenous leukemia in accelerated phase showed that approximately 13% of all nucleated cells contained von Willebrand protein and, therefore, appeared to be of megakaryocytic origin. This was confirmed by positive staining with antisera against platelet factor 4 and platelet glycoproteins. Short-term cultures of the buffy coat, which lacked endothelial cells, were metabolically labeled with [35S]methionine, and von Willebrand protein was immunopurified from cell lysates and culture medium. Cultures from this patient synthesized and secreted von Willebrand protein, in contrast with cultures from other patients with leukemia, who lacked circulating megakaryocytes, and from normal volunteers. The subunit composition of the megakaryocytic von Willebrand protein was very similar to that of human umbilical vein endothelial cells. The size of the processed subunit (220 kD) and of the cellular (260 kD) and secreted (275 kD) precursors from the two cell types were indistinguishable by gel electrophoresis. Furthermore, the ratio of precursor to processed subunit and the pattern of cellular and secreted nonreduced multimers were very similar. It appears, therefore, that the processing steps in biosynthesis of von Willebrand protein used by the megakaryocytes are very similar to those of umbilical vein endothelial cells.
Full text
PDF![1102](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/423998/d7d3aaee14af/jcinvest00123-0216.png)
![1103](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/423998/43ea3608d72e/jcinvest00123-0217.png)
![1104](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/423998/7a8871d76162/jcinvest00123-0218.png)
![1105](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/423998/026581c1c6e5/jcinvest00123-0219.png)
![1106](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/423998/e388d45cc65d/jcinvest00123-0220.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gimbrone M. A., Jr, Cotran R. S., Folkman J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol. 1974 Mar;60(3):673–684. doi: 10.1083/jcb.60.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoyer L. W. The factor VIII complex: structure and function. Blood. 1981 Jul;58(1):1–13. [PubMed] [Google Scholar]
- Huang M. J., Li C. Y., Nichols W. L., Young J. H., Katzmann J. A. Acute leukemia with megakaryocytic differentiation: a study of 12 cases identified immunocytochemically. Blood. 1984 Aug;64(2):427–439. [PubMed] [Google Scholar]
- Jaffe E. A., Hoyer L. W., Nachman R. L. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Invest. 1973 Nov;52(11):2757–2764. doi: 10.1172/JCI107471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koutts J., Walsh P. N., Plow E. F., Fenton J. W., 2nd, Bouma B. N., Zimmerman T. S. Active release of human platelet factor VIII-related antigen by adenosine diphosphate, collagen, and thrombin. J Clin Invest. 1978 Dec;62(6):1255–1263. doi: 10.1172/JCI109246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lynch D. C., Williams R., Zimmerman T. S., Kirby E. P., Livingston D. M. Biosynthesis of the subunits of factor VIIIR by bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1983 May;80(9):2738–2742. doi: 10.1073/pnas.80.9.2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch D. C., Zimmerman T. S., Kirby E. P., Livingston D. M. Subunit composition of oligomeric human von Willebrand factor. J Biol Chem. 1983 Nov 10;258(21):12757–12760. [PubMed] [Google Scholar]
- Mazur E. M., Hoffman R., Chasis J., Marchesi S., Bruno E. Immunofluorescent identification of human megakaryocyte colonies using an antiplatelet glycoprotein antiserum. Blood. 1981 Feb;57(2):277–286. [PubMed] [Google Scholar]
- Nachman R., Levine R., Jaffe E. A. Synthesis of factor VIII antigen by cultured guinea pig megakaryocytes. J Clin Invest. 1977 Oct;60(4):914–921. doi: 10.1172/JCI108846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rucinski B., Niewiarowski S., James P., Walz D. A., Budzynski A. Z. Antiheparin proteins secreted by human platelets. purification, characterization, and radioimmunoassay. Blood. 1979 Jan;53(1):47–62. [PubMed] [Google Scholar]
- Sakariassen K. S., Bolhuis P. A., Sixma J. J. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-Von Willebrand factor bound to the subendothelium. Nature. 1979 Jun 14;279(5714):636–638. doi: 10.1038/279636a0. [DOI] [PubMed] [Google Scholar]
- Tschopp T. B., Weiss H. J., Baumgartner H. R. Decreased adhesion of platelets to subendothelium in von Willebrand's disease. J Lab Clin Med. 1974 Feb;83(2):296–300. [PubMed] [Google Scholar]
- Wagner D. D., Ivatt R., Destree A. T., Hynes R. O. Similarities and differences between the fibronectins of normal and transformed hamster cells. J Biol Chem. 1981 Nov 25;256(22):11708–11715. [PubMed] [Google Scholar]
- Wagner D. D., Marder V. J. Biosynthesis of von Willebrand protein by human endothelial cells. Identification of a large precursor polypeptide chain. J Biol Chem. 1983 Feb 25;258(4):2065–2067. [PubMed] [Google Scholar]
- Wagner D. D., Marder V. J. Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol. 1984 Dec;99(6):2123–2130. doi: 10.1083/jcb.99.6.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner D. D., Olmsted J. B., Marder V. J. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol. 1982 Oct;95(1):355–360. doi: 10.1083/jcb.95.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zucker M. B., Broekman M. J., Kaplan K. L. Factor VIII-related antigen in human blood platelets: localization and release by thrombin and collagen. J Lab Clin Med. 1979 Nov;94(5):675–682. [PubMed] [Google Scholar]