Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Sep;76(3):1123–1130. doi: 10.1172/JCI112067

Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange.

R A Star, M B Burg, M A Knepper
PMCID: PMC424003  PMID: 3930570

Abstract

Cortical collecting ducts (CCD) from rabbits treated with deoxycorticosterone (DOC) actively secrete bicarbonate at high rates. To investigate the mechanism of bicarbonate secretion, we measured bicarbonate and chloride transport in CCD from rabbits treated with DOC for 9-24 d. Removal of chloride (replaced with gluconate) from both perfusate and bath inhibited bicarbonate secretion without changing transepithelial voltage. Removal of chloride only from the bath increased bicarbonate secretion, while removal of chloride only from the perfusate inhibited secretion. In contrast to the effect of removing chloride, removal of sodium from both the perfusate and bath (replacement with N-methyl-D-glucamine) did not change the rate of bicarbonate secretion. The rate of bicarbonate secretion equaled the rate of chloride absorption in tubules bathed with 0.1 mM ouabain to inhibit any cation-dependent chloride transport. Under these conditions, chloride absorption occurred against an electrochemical gradient. Removal of bicarbonate from both the perfusate and bath inhibited chloride absorption. Removal of bicarbonate only from the bath inhibited chloride absorption, while removal of bicarbonate from the lumen stimulated chloride absorption. We conclude that CCD from DOC-treated rabbits actively secrete bicarbonate and actively absorb chloride by an electroneutral mechanism involving 1:1 chloride/bicarbonate exchange. The process is independent of sodium.

Full text

PDF
1123

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arruda J. A., Dytko G., Mola R., Kurtzman N. A. On the mechanism of lithium-induced renal tubular acidosis: studies in the turtle bladder. Kidney Int. 1980 Feb;17(2):196–204. doi: 10.1038/ki.1980.23. [DOI] [PubMed] [Google Scholar]
  2. Bagnasco S., Good D., Balaban R., Burg M. Lactate production in isolated segments of the rat nephron. Am J Physiol. 1985 Apr;248(4 Pt 2):F522–F526. doi: 10.1152/ajprenal.1985.248.4.F522. [DOI] [PubMed] [Google Scholar]
  3. Balaban R. S., Mandel L. J., Soltoff S. P., Storey J. M. Coupling of active ion transport and aerobic respiratory rate in isolated renal tubules. Proc Natl Acad Sci U S A. 1980 Jan;77(1):447–451. doi: 10.1073/pnas.77.1.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burg M. B., Green N. Function of the thick ascending limb of Henle's loop. Am J Physiol. 1973 Mar;224(3):659–668. doi: 10.1152/ajplegacy.1973.224.3.659. [DOI] [PubMed] [Google Scholar]
  5. Burg M. B. Perfusion of isolated renal tubules. Yale J Biol Med. 1972 Jun-Aug;45(3-4):321–326. [PMC free article] [PubMed] [Google Scholar]
  6. Durham J. H., Matons C. Chloride-induced increment in short-circuiting current of the turtle bladder. Effects of in-vivo acid-base state. Biochim Biophys Acta. 1984 Jan 25;769(2):297–310. doi: 10.1016/0005-2736(84)90310-9. [DOI] [PubMed] [Google Scholar]
  7. Greger R. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pflugers Arch. 1981 Apr;390(1):38–43. doi: 10.1007/BF00582708. [DOI] [PubMed] [Google Scholar]
  8. Hanley M. J., Kokko J. P., Gross J. B., Jacobson H. R. Electrophysiologic study of the cortical collecting tubule of the rabbit. Kidney Int. 1980 Jan;17(1):74–81. doi: 10.1038/ki.1980.9. [DOI] [PubMed] [Google Scholar]
  9. Jacobson H. R. Medullary collecting duct acidification. Effects of potassium, HCO3 concentration, and pCO2. J Clin Invest. 1984 Dec;74(6):2107–2114. doi: 10.1172/JCI111635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laski M. E., Warnock D. G., Rector F. C., Jr Effects of chloride gradients on total CO2 flux in the rabbit cortical collecting tubule. Am J Physiol. 1983 Feb;244(2):F112–F121. doi: 10.1152/ajprenal.1983.244.2.F112. [DOI] [PubMed] [Google Scholar]
  11. Le Bouffant F., Hus-Citharel A., Morel F. Metabolic CO2 production by isolated single pieces of rat distal nephron segments. Pflugers Arch. 1984 Aug;401(4):346–353. doi: 10.1007/BF00584334. [DOI] [PubMed] [Google Scholar]
  12. Leslie B. R., Schwartz J. H., Steinmetz P. R. Coupling between Cl- absorption and HCO3- secretion in turtle urinary bladder. Am J Physiol. 1973 Sep;225(3):610–617. doi: 10.1152/ajplegacy.1973.225.3.610. [DOI] [PubMed] [Google Scholar]
  13. Lombard W. E., Kokko J. P., Jacobson H. R. Bicarbonate transport in cortical and outer medullary collecting tubules. Am J Physiol. 1983 Mar;244(3):F289–F296. doi: 10.1152/ajprenal.1983.244.3.F289. [DOI] [PubMed] [Google Scholar]
  14. McKinney T. D., Burg M. B. Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J Clin Invest. 1978 Jun;61(6):1421–1427. doi: 10.1172/JCI109061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McKinney T. D., Burg M. B. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J Clin Invest. 1977 Sep;60(3):766–768. doi: 10.1172/JCI108830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RECTOR F. C., Jr, CLAPP J. R. Evidence for active chloride reabsorption in the distal renal tubule of the rat. J Clin Invest. 1962 Jan;41:101–107. doi: 10.1172/JCI104451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sansom S. C., Weinman E. J., O'Neil R. G. Microelectrode assessment of chloride-conductive properties of cortical collecting duct. Am J Physiol. 1984 Aug;247(2 Pt 2):F291–F302. doi: 10.1152/ajprenal.1984.247.2.F291. [DOI] [PubMed] [Google Scholar]
  18. Satake N., Durham J. H., Ehrenspeck G., Brodsky W. A. Active electrogenic mechanisms for alkali and acid transport in turtle bladders. Am J Physiol. 1983 Mar;244(3):C259–C269. doi: 10.1152/ajpcell.1983.244.3.C259. [DOI] [PubMed] [Google Scholar]
  19. Schuster V. L. Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules. J Clin Invest. 1985 Jun;75(6):2056–2064. doi: 10.1172/JCI111925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwartz J. H., Steinmetz P. R. CO2 requirements for H+ secretion by the isolated turtle bladder. Am J Physiol. 1971 Jun;220(6):2051–2057. doi: 10.1152/ajplegacy.1971.220.6.2051. [DOI] [PubMed] [Google Scholar]
  21. Stoner L. C., Burg M. B., Orloff J. Ion transport in cortical collecting tubule; effect of amiloride. Am J Physiol. 1974 Aug;227(2):453–459. doi: 10.1152/ajplegacy.1974.227.2.453. [DOI] [PubMed] [Google Scholar]
  22. Tomita K., Pisano J. J., Knepper M. A. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest. 1985 Jul;76(1):132–136. doi: 10.1172/JCI111935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Velázquez H., Good D. W., Wright F. S. Mutual dependence of sodium and chloride absorption by renal distal tubule. Am J Physiol. 1984 Dec;247(6 Pt 2):F904–F911. doi: 10.1152/ajprenal.1984.247.6.F904. [DOI] [PubMed] [Google Scholar]
  24. Vurek G. G., Warnock D. G., Corsey R. Measurement of picomole amounts of carbon dioxide by calorimetry. Anal Chem. 1975 Apr;47(4):765–767. doi: 10.1021/ac60354a024. [DOI] [PubMed] [Google Scholar]
  25. White J. F., Imon M. A. Intestinal HCO3- secretion in Amphiuma: stimulation by mucosal Cl- and serosal Na+. J Membr Biol. 1982;68(3):207–214. doi: 10.1007/BF01872265. [DOI] [PubMed] [Google Scholar]
  26. Woodhall P. B., Tisher C. C. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J Clin Invest. 1973 Dec;52(12):3095–3108. doi: 10.1172/JCI107509. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES