Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Oct;76(4):1412–1417. doi: 10.1172/JCI112118

Possible role of adenosine in the macula densa mechanism of renin release in rabbits.

S Itoh, O A Carretero, R D Murray
PMCID: PMC424090  PMID: 2997277

Abstract

This study was designed to examine: (a) the effects of adenosine and its analogues on renin release in the absence of tubules, glomeruli, and macula densa, and (b) whether adenosine may be involved in a macula densa-mediated renin release mechanism. Rabbit afferent arterioles (Af) alone and afferent arterioles with macula densa attached (Af + MD) were microdissected and incubated for two consecutive 30-min periods. Hourly renin release rate from a single arteriole (or an arteriole with macula densa) was calculated and expressed as ng AI X h-1 X Af-1 (or Af + MD-1)/h (where AI is angiotensin I). Basal renin release rate from Af was 0.69 +/- 0.09 ng AI X h-1 X Af-1/h (means +/- SEM, n = 16) and remained stable for 60 min. Basal renin release rate from Af + MD was 0.20 +/- 0.04 ng AI X h-1 X Af + MD-1/h (n = 6), which was significantly lower (P less than 0.0025) than that from Af. When adenosine (0.1 microM) was added to Af, renin release decreased from 0.72 +/- 0.16 to 0.24 +/- 0.04 ng AI X h-1 X Af-1/h (P less than 0.025; n = 9). However, when adenosine was added to Af + MD, no significant change in renin release was observed. N6-cyclohexyl adenosine (an A1 adenosine receptor agonist) at 0.1 microM decreased renin release from Af from 0.69 +/- 0.14 to 0.39 +/- 0.12 ng AI X h-1 X Af-1/h (n = 5, P less than 0.05). However, 5'-N-ethylcarboxamide adenosine (an A2 adenosine receptor agonist) either at 0.1 microM or at 10 microM had no effect. Theophylline, at a concentration (10 microM) that does not block phosphodiesterase but does block adenosine receptors, increased renin release from Af + MD from 0.21 +/- 0.03 to 0.46 +/- 0.08 ng AI X h-1 X Af + MD-1/h (P less than 0.05; n = 8). The results are consistent with the hypotheses that adenosine decreases renin release via the activation of A1 adenosine receptors, and that adenosine may be an inhibitory signal from the macula densa to juxtaglomerular cells.

Full text

PDF
1412

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN J. J., DAVIES D. L., LEVER A. F., ROBERTSON J. I. Influence of sodium loading and sodium depletion on plasma-renin in man. Lancet. 1963 Aug 10;2(7302):278–279. doi: 10.1016/s0140-6736(63)90176-4. [DOI] [PubMed] [Google Scholar]
  2. Braverman B., Freeman R. H., Rostorfer H. H. The influence of dietary sodium chloride on in vitro renin release from rat kidney slices. Proc Soc Exp Biol Med. 1971 Oct;138(1):81–88. doi: 10.3181/00379727-138-35836. [DOI] [PubMed] [Google Scholar]
  3. Bruns R. F. Adenosine antagonism by purines, pteridines and benzopteridines in human fibroblasts. Biochem Pharmacol. 1981 Feb 15;30(4):325–333. doi: 10.1016/0006-2952(81)90062-9. [DOI] [PubMed] [Google Scholar]
  4. Bruns R. F. Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Can J Physiol Pharmacol. 1980 Jun;58(6):673–691. doi: 10.1139/y80-110. [DOI] [PubMed] [Google Scholar]
  5. Churchill P. C., Churchill M. C., McDonald F. D. Renin secretion and distal tubule Na+ in rats. Am J Physiol. 1978 Dec;235(6):F611–F616. doi: 10.1152/ajprenal.1978.235.6.F611. [DOI] [PubMed] [Google Scholar]
  6. Daly J. W. Adenosine receptors: targets for future drugs. J Med Chem. 1982 Mar;25(3):197–207. doi: 10.1021/jm00345a001. [DOI] [PubMed] [Google Scholar]
  7. Hedqvist P., Fredholm B. B., Olundh S. Antagonistic effects of theophylline and adenosine on adrenergic neuroeffector transmission in the rabbit kidney. Circ Res. 1978 Oct;43(4):592–598. doi: 10.1161/01.res.43.4.592. [DOI] [PubMed] [Google Scholar]
  8. Itoh S., Carretero O. A., Murray R. D. Renin release from isolated afferent arterioles. Kidney Int. 1985 May;27(5):762–767. doi: 10.1038/ki.1985.77. [DOI] [PubMed] [Google Scholar]
  9. Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Murray R. D., Churchill P. C. Concentration dependency of the renal vascular and renin secretory responses to adenosine receptor agonists. J Pharmacol Exp Ther. 1985 Jan;232(1):189–193. [PubMed] [Google Scholar]
  11. Murray R. D., Churchill P. C. Effects of adenosine receptor agonists in the isolated, perfused rat kidney. Am J Physiol. 1984 Sep;247(3 Pt 2):H343–H348. doi: 10.1152/ajpheart.1984.247.3.H343. [DOI] [PubMed] [Google Scholar]
  12. Osswald H., Nabakowski G., Hermes H. Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem. 1980;12(1-2):263–267. doi: 10.1016/0020-711x(80)90082-8. [DOI] [PubMed] [Google Scholar]
  13. Osswald H., Schmitz H. J., Heidenreich O. Adenosine response of the rat kidney after saline loading, sodium restriction and hemorrhagia. Pflugers Arch. 1975 Jun 26;357(3-4):323–333. doi: 10.1007/BF00585986. [DOI] [PubMed] [Google Scholar]
  14. Osswald H., Schmitz H. J., Kemper R. Renal action of adenosine: effect on renin secretion in the rat. Naunyn Schmiedebergs Arch Pharmacol. 1978 May;303(1):95–99. doi: 10.1007/BF00496190. [DOI] [PubMed] [Google Scholar]
  15. Osswald H., Spielman W. S., Knox F. G. Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res. 1978 Sep;43(3):465–469. doi: 10.1161/01.res.43.3.465. [DOI] [PubMed] [Google Scholar]
  16. Park C. S., Malvin R. L., Murray R. D., Cho K. W. Renin secretion as a function of renal renin content in dogs. Am J Physiol. 1978 Jun;234(6):F506–F509. doi: 10.1152/ajprenal.1978.234.6.F506. [DOI] [PubMed] [Google Scholar]
  17. Spielman W. S. Antagonistic effect of theophylline on the adenosine-induced decreased in renin release. Am J Physiol. 1984 Aug;247(2 Pt 2):F246–F251. doi: 10.1152/ajprenal.1984.247.2.F246. [DOI] [PubMed] [Google Scholar]
  18. Spielman W. S., Thompson C. I. A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am J Physiol. 1982 May;242(5):F423–F435. doi: 10.1152/ajprenal.1982.242.5.F423. [DOI] [PubMed] [Google Scholar]
  19. Tagawa H., Vander A. J. Effects of adenosine compounds on renal function and renin secretion in dogs. Circ Res. 1970 Mar;26(3):327–338. doi: 10.1161/01.res.26.3.327. [DOI] [PubMed] [Google Scholar]
  20. Vander A. J. Control of renin release. Physiol Rev. 1967 Jul;47(3):359–382. doi: 10.1152/physrev.1967.47.3.359. [DOI] [PubMed] [Google Scholar]
  21. Woodcock E. A., Loxley R., Leung E., Johnston C. I. Demonstration of RA - adenosine receptors in rat renal papillae. Biochem Biophys Res Commun. 1984 Jun 15;121(2):434–440. doi: 10.1016/0006-291x(84)90201-8. [DOI] [PubMed] [Google Scholar]
  22. van Calker D., Müller M., Hamprecht B. Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature. 1978 Dec 21;276(5690):839–841. doi: 10.1038/276839a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES