Abstract
Serotonin stimulates aldosterone secretion both in vitro and in vivo, and serotonin antagonism decreases plasma aldosterone levels in patients with idiopathic aldosteronism. This study was designed to assess the effects of the serotonin precursor, 5-hydroxytryptophan (5HTP), upon aldosterone secretion in man, and to determine whether stimulatory effects of 5HTP are mediated through the central nervous system. Oral 5HTP, administered as a single 200-mg dose, increased plasma aldosterone levels from 4.7 +/- 0.6 to 13.3 +/- 2.8 ng/dl in dexamethasone-pretreated, normal volunteers. Peripheral inhibition of decarboxylation of 5HTP, achieved by pretreatment with carboxydopa, 25 mg three times daily for 3 d, significantly increased the stimulatory effects of 5HTP on aldosterone levels (P less than 0.001). No change in aldosterone levels occurred in subjects who received placebo after pretreatment with dexamethasone and carboxydopa. Increased aldosterone was not accompanied by increases in plasma levels of renin activity, potassium, or ACTH. Plasma levels of 5HTP were markedly increased by carboxydopa pretreatment, but peak plasma levels of serotonin were not significantly altered. Four patients with idiopathic aldosteronism all had an increase in plasma aldosterone levels after 5HTP administration, whereas the response in four patients with aldosterone-producing adenoma was variable. Incubation of isolated human and rat adrenal glomerulosa cells with serotonin resulted in increased aldosterone secretion by both sets of cells, whereas 5HTP was ineffective in stimulating aldosterone secretion in vitro. We conclude that central serotonergic pathways are involved in the stimulation of aldosterone induced by administration of 5HTP. This mechanism may be an important etiologic factor in the hypersecretion of aldosterone that occurs in patients with idiopathic aldosteronism.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antunes J. R., Dale S. L., Melby J. C. Simplified radioimmunoassay for aldosterone using antisera to aldosterone-gamma-lactone. Steroids. 1976 Nov;28(5):621–630. doi: 10.1016/0039-128x(76)90004-0. [DOI] [PubMed] [Google Scholar]
- BLAIR-WEST J. R., COGHLAN J. P., DENTON D. A., GODING J. R., MUNRO J. A., PETERSON R. E., WINTOUR M. Humoral stimulation of adrenal cortical secretion. J Clin Invest. 1962 Aug;41:1606–1627. doi: 10.1172/JCI104619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barney C. C., Threatte R. M., Kikta D. C., Fregly M. J. Effects of serotonin and L-5-hydroxytryptophan on plasma renin activity in rats. Pharmacol Biochem Behav. 1981 Jun;14(6):895–900. doi: 10.1016/0091-3057(81)90380-4. [DOI] [PubMed] [Google Scholar]
- Brown R. D., Wisgerhof M., Carpenter P. C., Brown G., Jiang N. S., Kao P., Hegstad R. Adrenal sensitivity to angiotensin II and undiscovered aldosterone stimulating factors in hypertension. J Steroid Biochem. 1979 Jul;11(1C):1043–1050. doi: 10.1016/0022-4731(79)90049-9. [DOI] [PubMed] [Google Scholar]
- Carey R. M., Ayers C. R., Vaughan E. D., Jr, Peach M. J., Herf S. M. Activity of [des-aspartyl1]-angiotensin II in primary aldosteronism. J Clin Invest. 1979 Apr;63(4):718–726. doi: 10.1172/JCI109355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carey R. M., Sen S., Dolan L. M., Malchoff C. D., Bumpus F. M. Idiopathic hyperaldosteronism. A possible role for aldosterone-stimulating factor. N Engl J Med. 1984 Jul 12;311(2):94–100. doi: 10.1056/NEJM198407123110205. [DOI] [PubMed] [Google Scholar]
- Chadwick D., Jenner P., Harris R., Reynolds E. H., Marsden C. D. Manipulation of brain serotonin in the treatment of myoclonus. Lancet. 1975 Sep 6;2(7932):434–435. doi: 10.1016/s0140-6736(75)90846-6. [DOI] [PubMed] [Google Scholar]
- Cohen E. L., Grim C. E., Conn J. W., Blough W. M., Jr, Guyer R. B., Kem D. C., Lucas C. P. Accurate and rapid measurement of plasma renin activity by radioimmunoassay. Results in normal and hypertensive people. J Lab Clin Med. 1971 Jun;77(6):1025–1038. [PubMed] [Google Scholar]
- Cooke C. R., Horvath J. S., Moore M. A., Bledsoe T., Walker W. G. Modulation of plasma aldosterone concentration by plasma potassium in anephric man in the absence of a change in potassium balance. J Clin Invest. 1973 Dec;52(12):3028–3032. doi: 10.1172/JCI107501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dash R. J., England B. G., Midgley A. R., Jr, Niswender G. D. A specific, non-chromatographic radioimmunoassay for human plasma cortisol. Steroids. 1975 Nov;26(5):647–661. doi: 10.1016/0039-128x(75)90057-4. [DOI] [PubMed] [Google Scholar]
- De Léan J., Richardson J. C., Hornykiewicz O. Beneficial effects of serotonin precursors in postanoxic action myoclonus. Neurology. 1976 Sep;26(9):863–868. doi: 10.1212/wnl.26.9.863. [DOI] [PubMed] [Google Scholar]
- Dluhy R. G., Axelrod L., Underwood R. H., Williams G. H. Studies of the control of plasma aldosterone concentration in normal man. II. Effect of dietary potassium and acute potassium infusion. J Clin Invest. 1972 Aug;51(8):1950–1957. doi: 10.1172/JCI107001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dluhy R. G., Greenfield M., Williams G. H. Effect of simultaneous potassium and saline loading on plasma aldosterone levels. J Clin Endocrinol Metab. 1977 Jul;45(1):141–146. doi: 10.1210/jcem-45-1-141. [DOI] [PubMed] [Google Scholar]
- FARRELL G., McISAAC W. M. Adrenglomerulotropin. Arch Biochem Biophys. 1961 Sep;94:543–544. doi: 10.1016/0003-9861(61)90085-6. [DOI] [PubMed] [Google Scholar]
- Ferriss J. B., Beevers D. G., Brown J. J., Fraser R., Lever A. F., Padfield P. L., Robertson J. I. Low-renin ("primary") hyperaldosteronism. Differential diagnosis and distinction of sub-groups within the syndrome. Am Heart J. 1978 May;95(5):641–658. doi: 10.1016/0002-8703(78)90307-1. [DOI] [PubMed] [Google Scholar]
- Franco-Saenz R., Mulrow P. J., Kim K. Idiopathic aldosteronism. A possible disease of the intermediate lobe of the pituitary. JAMA. 1984 May 18;251(19):2555–2558. doi: 10.1001/jama.251.19.2555. [DOI] [PubMed] [Google Scholar]
- Fuller R. W., Clemens J. A. Role of serotonin in the hypothalamic regulation of pituitary function. Adv Exp Med Biol. 1981;133:431–444. doi: 10.1007/978-1-4684-3860-4_25. [DOI] [PubMed] [Google Scholar]
- Ganguly A., Grim C. E., Weinberger M. H. Primary aldosteronism. The etiologic spectrum of disorders and their clinical differentiation. Arch Intern Med. 1982 Apr;142(4):813–815. doi: 10.1001/archinte.142.4.813. [DOI] [PubMed] [Google Scholar]
- Gross M. D., Grekin R. J., Gniadek T. C., Villareal J. Z. Suppression of aldosterone by cyproheptadine in idiopathic aldosteronism. N Engl J Med. 1981 Jul 23;305(4):181–185. doi: 10.1056/NEJM198107233050401. [DOI] [PubMed] [Google Scholar]
- Gross M. D., Shapiro B., Grekin R. J., Freitas J. E., Glazer G., Beierwaltes W. H., Thompson N. W. Scintigraphic localization of adrenal lesions in primary aldosteronism. Am J Med. 1984 Nov;77(5):839–844. doi: 10.1016/0002-9343(84)90521-7. [DOI] [PubMed] [Google Scholar]
- Güllner H. G., Gill J. R., Jr Beta endorphin selectively stimulates aldosterone secretion in hypophysectomized, nephrectomized dogs. J Clin Invest. 1983 Jan;71(1):124–128. doi: 10.1172/JCI110740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Himathongkam T., Dluhy R. G., Williams G. H. Potassim-aldosterone-renin interrelationships. J Clin Endocrinol Metab. 1975 Jul;41(1):153–159. doi: 10.1210/jcem-41-1-153. [DOI] [PubMed] [Google Scholar]
- Katz F. H., Romfh P., Smith J. A. Diurnal variation of plasma aldosterone, cortisol and renin activity in supine man. J Clin Endocrinol Metab. 1975 Jan;40(1):125–134. doi: 10.1210/jcem-40-1-125. [DOI] [PubMed] [Google Scholar]
- Lamberts S. W., de Lange S. A., Stefanko S. Z. Adrenocorticotropin-secreting pituitary adenomas originate from the anterior or the intermediate lobe in Cushing's disease: differences in the regulation of hormone secretion. J Clin Endocrinol Metab. 1982 Feb;54(2):286–291. doi: 10.1210/jcem-54-2-286. [DOI] [PubMed] [Google Scholar]
- Lewis D. A., Sherman B. M. Serotonergic stimulation of adrenocorticotropin secretion in man. J Clin Endocrinol Metab. 1984 Mar;58(3):458–462. doi: 10.1210/jcem-58-3-458. [DOI] [PubMed] [Google Scholar]
- Lyness W. H., Friedle N. M., Moore K. E. Current concepts: II. Measurement of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in discrete brain nuclei using reverse phase liquid chromatography with electrochemical detection. Life Sci. 1980 Apr 7;26(14):1109–1114. doi: 10.1016/0024-3205(80)90649-9. [DOI] [PubMed] [Google Scholar]
- MORGAN J. F., MORTON H. J., PARKER R. C. Nutrition of animal cells in tissue culture; initial studies on a synthetic medium. Proc Soc Exp Biol Med. 1950 Jan;73(1):1–8. doi: 10.3181/00379727-73-17557. [DOI] [PubMed] [Google Scholar]
- Magnussen I., Van Woert M. H. Human pharmacokinetics of long term 5-hydroxytryptophan combined with decarboxylase inhibitors. Eur J Clin Pharmacol. 1982;23(1):81–86. doi: 10.1007/BF01061381. [DOI] [PubMed] [Google Scholar]
- Mantero F., Opocher G., Boscaro M., Armanini D. Effect of serotonin on plasma aldosterone in man. J Endocrinol Invest. 1982 Mar-Apr;5(2):97–99. doi: 10.1007/BF03350498. [DOI] [PubMed] [Google Scholar]
- Matsuoka H., Mulrow P. J., Franco-Saenz R., Li C. H. Effects of beta-lipotropin and beta-lipotropin-derived peptides on aldosterone production in the rat adrenal gland. J Clin Invest. 1981 Sep;68(3):752–759. doi: 10.1172/JCI110311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modlinger R. S., Schonmuller J. M., Arora S. P. Stimulation of aldosterone, renin, and cortisol by tryptophan. J Clin Endocrinol Metab. 1979 Apr;48(4):599–603. doi: 10.1210/jcem-48-4-599. [DOI] [PubMed] [Google Scholar]
- Müller J., Ziegler W. H. Stimulation of aldosterone biosynthesis in vitro by serotonin. Acta Endocrinol (Copenh) 1968 Sep;59(1):23–35. doi: 10.1530/acta.0.0590023. [DOI] [PubMed] [Google Scholar]
- Sapun D. I., Farah J. M., Jr, Mueller G. P. Evidence that a serotonergic mechanism stimulates the secretion of pituitary beta-endorphin-like immunoreactivity in the rat. Endocrinology. 1981 Aug;109(2):421–426. doi: 10.1210/endo-109-2-421. [DOI] [PubMed] [Google Scholar]
- Schiffrin E. L., Chrétien M., Seidah N. G., Lis M., Gutkowska J., Cantin M., Genest J. Response of human aldosteronoma cells in culture to the N-terminal glycopeptide of pro-opiomelanocortin and gamma 3-MSH. Horm Metab Res. 1983 Apr;15(4):181–184. doi: 10.1055/s-2007-1018663. [DOI] [PubMed] [Google Scholar]
- Sen S., Valenzuela R., Smeby R., Bravo E. L., Bumpus F. M. Localization, purification, and biological activity of a new aldosterone-stimulating factor. Hypertension. 1981 May-Jun;3(3 Pt 2):I81–I86. doi: 10.1161/01.hyp.3.3_pt_2.i81. [DOI] [PubMed] [Google Scholar]
- Spinedi E., Negro-Vilar A. Serotonin and adrenocorticotropin (ACTH) release: direct effects at the anterior pituitary level and potentiation of arginine vasopressin-induced ACTH release. Endocrinology. 1983 Apr;112(4):1217–1223. doi: 10.1210/endo-112-4-1217. [DOI] [PubMed] [Google Scholar]
- Szafarczyk A., Alonso G., Ixart G., Malaval F., Nouguier-Soule J., Assenmacher I. Serotoninergic system and circadian rhythms of ACTH and corticosterone in rats. Am J Physiol. 1980 Dec;239(6):E482–E489. doi: 10.1152/ajpendo.1980.239.6.E482. [DOI] [PubMed] [Google Scholar]
- Szalay K. S., Stark E. Effect of alpha-MSH on the corticosteroid production of isolated zona glomerulosa and zona fasciculata cells. Life Sci. 1982 Jun 14;30(24):2101–2108. doi: 10.1016/0024-3205(82)90452-0. [DOI] [PubMed] [Google Scholar]
- Thal L. J., Sharpless N. S., Wolfson L., Katzman R. Treatment of myoclonus with L-5-hydroxytryptophan and carbidopa: clinical, electrophysiological, and biochemical observations. Ann Neurol. 1980 Jun;7(6):570–576. doi: 10.1002/ana.410070611. [DOI] [PubMed] [Google Scholar]
- Van Woert M. H., Rosenbaum D., Howieson J., Bowers M. B., Jr Long-term therapy of myoclonus and other neurologic disorders with L-5-hydroxytryptophan and carbidopa. N Engl J Med. 1977 Jan 13;296(2):70–75. doi: 10.1056/NEJM197701132960203. [DOI] [PubMed] [Google Scholar]
- Van Woert M. H., Sethy V. H. Therapy of intention myoclonus with L-5-hydroxytryptophan and a peripheral decarboxylase inhibitor, MK 486. Neurology. 1975 Feb;25(2):135–140. doi: 10.1212/wnl.25.2.135. [DOI] [PubMed] [Google Scholar]
- Vaque P., Oliver C., Jaquet P., Vague J. Le dosage radioimmunologique de l'ACTH plasmatique. Resultats chez les sujets normaux. Rev Eur Etud Clin Biol. 1971 May;16(5):485–493. [PubMed] [Google Scholar]
- Vinson G. P., Whitehouse B. J., Dell A., Etienne T., Morris H. R. Characterisation of an adrenal zona glomerulosa-stimulating component of posterior pituitary extracts as alpha-MSH. Nature. 1980 Apr 3;284(5755):464–467. doi: 10.1038/284464a0. [DOI] [PubMed] [Google Scholar]
- Warsh J. J., Stancer H. C. Brain and peripheral metabolism of 5-hydroxytryptophan-14C following peripheral decarboxylase inhibition. J Pharmacol Exp Ther. 1976 Jun;197(3):545–555. [PubMed] [Google Scholar]
- Weinberger M. H., Grim C. E., Hollifield J. W., Kem D. C., Ganguly A., Kramer N. J., Yune H. Y., Wellman H., Donohue J. P. Primary aldosteronism: diagnosis, localization, and treatment. Ann Intern Med. 1979 Mar;90(3):386–395. doi: 10.7326/0003-4819-90-3-386. [DOI] [PubMed] [Google Scholar]
- Yehuda R., Meyer J. S. A role for serotonin in the hypothalamic-pituitary-adrenal response to insulin stress. Neuroendocrinology. 1984 Jan;38(1):25–32. doi: 10.1159/000123861. [DOI] [PubMed] [Google Scholar]
- Zimmermann H., Ganong W. F. Pharmacological evidence that stimulation of central serotonergic pathways increases renin secretion. Neuroendocrinology. 1980;30(2):101-7, 109. doi: 10.1159/000122983. [DOI] [PubMed] [Google Scholar]

