Abstract
We studied the effect of an arginine vasopressin (AVP) analogue, (1-[beta-mercapto-beta, beta-cyclopentamethylenepropionic acid],2-O-ethyltyrosine, 4-valine)AVP(d[CH2]5Tyr[Et]VAVP), on the stimulation of adenylate cyclase by various hormones in the isolated nephron segments and 3H-AVP binding to renal papillary membranes from the rat. The net water flux across the renal cortical collecting tubules of the rabbit was also examined. We found that d(CH2)5Tyr(Et)VAVP significantly inhibited adenylate cyclase activation by AVP in cortical, medullary, and papillary collecting tubules and in the medullary thick ascending limb. In contrast, the AVP analogue did not alter the stimulation of adenylate cyclase by parathyroid hormone in the cortical thick ascending limb, by glucagon in the medullary thick ascending limb, and by calcitonin in cortical collecting tubules. In addition, d(CH2)5Tyr(Et)VAVP blocked [3H]AVP binding to renal papillary membranes. The enhanced net water transport induced by AVP in isolated, perfused rabbit cortical collecting tubules also was completely blocked by this AVP analogue. These results indicate that d(CH2)5Tyr(Et)VAVP specifically antagonizes the cellular action of AVP on the medullary thick ascending limb and on the cortical, medullary, and papillary collecting tubules. Evidence is also presented for competitive antagonism as the cellular mechanism of action.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
- Butlen D., Guillon G., Rajerison R. M., Jard S., Sawyer W. H., Manning M. Structural requirements for activation of vasopressin-sensitive adenylate cyclase, hormone binding, and antidiuretic actions: effects of highly potent analogues and competitive inhibitors. Mol Pharmacol. 1978 Nov;14(6):1006–1017. [PubMed] [Google Scholar]
- Chabardès D., Gagnan-Brunette M., Imbert-Teboul M., Gontcharevskaia O., Montégut M., Clique A., Morel F. Adenylate cyclase responsiveness to hormones in various portions of the human nephron. J Clin Invest. 1980 Feb;65(2):439–448. doi: 10.1172/JCI109687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillon G., Butlen D., Cantau B., Barth T., Jard S. Kinetic and pharmacological characterization of vasopressin membrane receptors from human kidney medulla: relation to adenylate cyclase activation. Eur J Pharmacol. 1982 Dec 3;85(3-4):291–304. doi: 10.1016/0014-2999(82)90216-3. [DOI] [PubMed] [Google Scholar]
- Hall D. A., Grantham J. J. Temperature effect on ADH response of isolated perfused rabbit collecting tubules. Am J Physiol. 1980 Dec;239(6):F595–F601. doi: 10.1152/ajprenal.1980.239.6.F595. [DOI] [PubMed] [Google Scholar]
- Hall D. A., Varney D. M. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle's loop. J Clin Invest. 1980 Oct;66(4):792–802. doi: 10.1172/JCI109917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harkcom T. M., Kim J. K., Palumbo P. J., Hui Y. S., Dousa T. P. Modulatory effect of thyroid function on enzymes of the vasopressin-sensitive adenosine 3',5'-monophosphate system in renal medulla. Endocrinology. 1978 May;102(5):1475–1484. doi: 10.1210/endo-102-5-1475. [DOI] [PubMed] [Google Scholar]
- Horster M. F., Zink H. Functional differentiation of the medullary collecting tubule: influence of vasopressin. Kidney Int. 1982 Oct;22(4):360–365. doi: 10.1038/ki.1982.182. [DOI] [PubMed] [Google Scholar]
- Imbert-Teboul M., Chabardès D., Montégut M., Clique A., Morel F. Vasopressin-dependent adenylate cyclase activities in the rat kidney medulla: evidence for two separate sites of action. Endocrinology. 1978 Apr;102(4):1254–1261. doi: 10.1210/endo-102-4-1254. [DOI] [PubMed] [Google Scholar]
- Ishikawa S., Kim J. K., Schrier R. W. Further in vivo evidence for antagonist-to-antidiuretic action of arginine vasopressin. Am J Physiol. 1983 Nov;245(5 Pt 1):R713–R719. doi: 10.1152/ajpregu.1983.245.5.R713. [DOI] [PubMed] [Google Scholar]
- Ishikawa S., Schrier R. W. Effect of arginine vasopressin antagonist on renal water excretion in glucocorticoid and mineralocorticoid deficient rats. Kidney Int. 1982 Dec;22(6):587–593. doi: 10.1038/ki.1982.216. [DOI] [PubMed] [Google Scholar]
- Kim J. K., Frohnert P. P., Hui Y. S., Barnes L. D., Farrow G. M., Dousa T. P. Enzymes of cyclic 3',5'-nucleotide metabolism in human renal cortex and renal adenocarcinoma. Kidney Int. 1977 Sep;12(3):172–183. doi: 10.1038/ki.1977.98. [DOI] [PubMed] [Google Scholar]
- Kim J. K., Jackson B. A., Edwards R. M., Dousa T. P. Effect of potassium depletion on the vasopressin-sensitive cyclic AMP system in rat outer medullary tubules. J Lab Clin Med. 1982 Jan;99(1):29–38. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lindeberg G., Vilhardt H., Larsson L. E., Melin P., Pliska V. Effect of O-alkylated analogues of lysine vasopressin on adenylate cyclase of pig kidney membranes. J Recept Res. 1980;1(3):389–402. doi: 10.3109/10799898009038789. [DOI] [PubMed] [Google Scholar]
- Manning M., Lammek B., Kolodziejczyk A. M., Seto J., Sawyer W. H. Synthetic antagonists of in vivo antidiuretic and vasopressor responses to arginine-vasopressin. J Med Chem. 1981 Jun;24(6):701–706. doi: 10.1021/jm00138a012. [DOI] [PubMed] [Google Scholar]
- Morel F., Chabardès D., Imbert M. Functional segmentation of the rabbit distal tubule by microdetermination of hormone-dependent adenylate cyclase activity. Kidney Int. 1976 Mar;9(3):264–277. doi: 10.1038/ki.1976.29. [DOI] [PubMed] [Google Scholar]
- Morel F. Sites of hormone action in the mammalian nephron. Am J Physiol. 1981 Mar;240(3):F159–F164. doi: 10.1152/ajprenal.1981.240.3.F159. [DOI] [PubMed] [Google Scholar]
- Olefsky J., Johnson J., Liu F., Edwards P., Baur S. Comparison of 125-I-insulin binding and degradation to isolated rat hepatocytes and liver membranes. Diabetes. 1975 Sep;24(9):801–810. doi: 10.2337/diab.24.9.801. [DOI] [PubMed] [Google Scholar]
- Salomon Y. Adenylate cyclase assay. Adv Cyclic Nucleotide Res. 1979;10:35–55. [PubMed] [Google Scholar]
- Sasaki S., Imai M. Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle's loop of mouse, rat, and rabbit kidneys. Pflugers Arch. 1980 Feb;383(3):215–221. doi: 10.1007/BF00587521. [DOI] [PubMed] [Google Scholar]
- Sawyer W. H., Pang P. K., Seto J., McEnroe M., Lammek B., Manning M. Vasopressin analogs that antagonize antidiuretic responses by rats to the antidiuretic hormone. Science. 1981 Apr 3;212(4490):49–51. doi: 10.1126/science.7209515. [DOI] [PubMed] [Google Scholar]
- Stassen F. L., Erickson R. W., Huffman W. F., Stefankiewicz J., Sulat L., Wiebelhaus V. D. Molecular mechanisms of novel antidiuretic antagonists: analysis of the effects on vasopressin binding and adenylate cyclase activation in animal and human kidney. J Pharmacol Exp Ther. 1982 Oct;223(1):50–54. [PubMed] [Google Scholar]
