Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Feb;79(2):588–594. doi: 10.1172/JCI112851

Dichloroacetate inhibits glycolysis and augments insulin-stimulated glycogen synthesis in rat muscle.

A S Clark, W E Mitch, M N Goodman, J M Fagan, M A Goheer, R T Curnow
PMCID: PMC424134  PMID: 3543056

Abstract

The decrease in plasma lactate during dichloroacetate (DCA) treatment is attributed to stimulation of lactate oxidation. To determine whether DCA also inhibits lactate production, we measured glucose metabolism in muscles of fed and fasted rats incubated with DCA and insulin. DCA increased glucose-6-phosphate, an allosteric modifier of glycogen synthase, approximately 50% and increased muscle glycogen synthesis and glycogen content greater than 25%. Lactate release fell; inhibition of glycolysis accounted for greater than 80% of the decrease. This was associated with a decrease in intracellular AMP, but no change in citrate or ATP. When lactate oxidation was increased by raising extracellular lactate, glycolysis decreased (r = - 0.91), suggesting that lactate oxidation regulates glycolysis. When muscle lactate production was greatly stimulated by thermal injury, DCA increased glycogen synthesis, normalized glycogen content, and inhibited glycolysis, thereby reducing lactate release. The major effect of DCA on lactate metabolism in muscle is to inhibit glycolysis.

Full text

PDF
588

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu Romen S., Tannen R. L. Therapeutic benefit of dichloroacetate in experimentally induced hypoxic lactic acidosis. J Lab Clin Med. 1986 Apr;107(4):378–383. [PubMed] [Google Scholar]
  2. Ashcroft S. J., Weerasinghe L. C., Bassett J. M., Randle P. J. The pentose cycle and insulin release in mouse pancreatic islets. Biochem J. 1972 Feb;126(3):525–532. doi: 10.1042/bj1260525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Backshear P. J., Holloway P. A., Alberti K. G. Metabolic interactions of dichloroacetate and insulin in experimental diabetic ketoacidosis. Biochem J. 1975 Feb;146(2):447–456. doi: 10.1042/bj1460447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Challiss R. A., Arch J. R., Newsholme E. A. The rate of substrate cycling between fructose 6-phosphate and fructose 1,6-bisphosphate in skeletal muscle. Biochem J. 1984 Jul 1;221(1):153–161. doi: 10.1042/bj2210153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. S., Fagan J. M., Mitch W. E. Selectivity of the insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem J. 1985 Nov 15;232(1):273–276. doi: 10.1042/bj2320273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark A. S., Kelly R. A., Mitch W. E. Systemic response to thermal injury in rats. Accelerated protein degradation and altered glucose utilization in muscle. J Clin Invest. 1984 Sep;74(3):888–897. doi: 10.1172/JCI111506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark A. S., Mitch W. E. Comparison of protein synthesis and degradation in incubated and perfused muscle. Biochem J. 1983 Jun 15;212(3):649–653. doi: 10.1042/bj2120649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark A. S., Mitch W. E. Muscle protein turnover and glucose uptake in acutely uremic rats. Effects of insulin and the duration of renal insufficiency. J Clin Invest. 1983 Sep;72(3):836–845. doi: 10.1172/JCI111054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark M. G., Bloxham D. P., Holland P. C., Lardy H. A. Estimation of the fructose diphosphatase-phosphofructokinase substrate cycle in the flight muscle of Bombus affinis. Biochem J. 1973 Jun;134(2):589–597. doi: 10.1042/bj1340589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crabb D. W., Harris R. A. Mechanism responsible for the hypoglycemic actions of dichloroacetate and 2-chloropropionate. Arch Biochem Biophys. 1979 Nov;198(1):145–152. doi: 10.1016/0003-9861(79)90405-3. [DOI] [PubMed] [Google Scholar]
  11. Diamond M. P., Suhrer J. H., Jr, Williams P. E., Lacy W. W., Cherrington A. D. Contribution of the liver and extrasplanchnic tissues to the hypoglycemic action of dichloroacetate in the conscious dog. Diabetes. 1982 Apr;31(4 Pt 1):326–332. doi: 10.2337/diab.31.4.326. [DOI] [PubMed] [Google Scholar]
  12. Diamond M. P., Williams P. E., Lacy W. W., Cherrington A. D. Effect of dichloroacetate on gluconeogenesis in vivo in the presence of a fixed gluconeogenic substrate supply to the liver. Metabolism. 1981 Sep;30(9):880–885. doi: 10.1016/0026-0495(81)90066-4. [DOI] [PubMed] [Google Scholar]
  13. Evans O. B., Stacpoole P. W. Prolonged hypolactatemia and increased total pyruvate dehydrogenase activity by dichloroacetate. Biochem Pharmacol. 1982 Apr 1;31(7):1295–1300. doi: 10.1016/0006-2952(82)90019-3. [DOI] [PubMed] [Google Scholar]
  14. Geller D. ATP formation. Methods Enzymol. 1972;24:88–92. doi: 10.1016/0076-6879(72)24057-5. [DOI] [PubMed] [Google Scholar]
  15. Gilboe D. P., Larson K. L., Nuttall F. Q. Radioactive method for the assay of glycogen phosphorylases. Anal Biochem. 1972 May;47(1):20–27. doi: 10.1016/0003-2697(72)90274-6. [DOI] [PubMed] [Google Scholar]
  16. Goodman M. N., Ruderman N. B., Aoki T. T. Glucose and amino acid metabolism in perfused skeletal muscle. Effect of dichloroacetate. Diabetes. 1978 Nov;27(11):1065–1074. doi: 10.2337/diab.27.11.1065. [DOI] [PubMed] [Google Scholar]
  17. Graf H., Leach W., Arieff A. I. Effects of dichloroacetate in the treatment of hypoxic lactic acidosis in dogs. J Clin Invest. 1985 Sep;76(3):919–923. doi: 10.1172/JCI112090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Katz J., Dunn A. Glucose-2-t as a tracer for glucose metabolism. Biochemistry. 1967 Jan;6(1):1–5. doi: 10.1021/bi00853a001. [DOI] [PubMed] [Google Scholar]
  19. Katz J., Wals P. A., Golden S., Rognstad R. Recycling of glucose by rat hepatocytes. Eur J Biochem. 1975 Dec 1;60(1):91–101. doi: 10.1111/j.1432-1033.1975.tb20979.x. [DOI] [PubMed] [Google Scholar]
  20. Kosow D. P., Rose I. A. Product inhibition of the hexokinases. J Biol Chem. 1970 Jan 10;245(1):198–204. [PubMed] [Google Scholar]
  21. May R. C., Clark A. S., Goheer M. A., Mitch W. E. Specific defects in insulin-mediated muscle metabolism in acute uremia. Kidney Int. 1985 Sep;28(3):490–497. doi: 10.1038/ki.1985.155. [DOI] [PubMed] [Google Scholar]
  22. McAllister A., Allison S. P., Randle P. J. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo. Biochem J. 1973 Aug;134(4):1067–1081. doi: 10.1042/bj1341067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McLane J. A., Holloszy J. O. Glycogen synthesis from lactate in the three types of skeletal muscle. J Biol Chem. 1979 Jul 25;254(14):6548–6553. [PubMed] [Google Scholar]
  24. Olson M. S., Dennis S. C., DeBuysere M. S., Padma A. The regulation of pyruvate dehydrogenase in the isolated perfused rat heart. J Biol Chem. 1978 Oct 25;253(20):7369–7375. [PubMed] [Google Scholar]
  25. Park R., Arieff A. I. Treatment of lactic acidosis with dichloroacetate in dogs. J Clin Invest. 1982 Oct;70(4):853–862. doi: 10.1172/JCI110682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roach P. J., Larner J. Rabbit skeletal muscle glycogen synthase. II. Enzyme phosphorylation state and effector concentrations as interacting control parameters. J Biol Chem. 1976 Apr 10;251(7):1920–1925. [PubMed] [Google Scholar]
  27. Schadewaldt P., Münch U., Prengel M., Staib W. Estimation of pyruvate decarboxylation in perfused rat skeletal muscle. Biochem Biophys Res Commun. 1983 Oct 31;116(2):456–461. doi: 10.1016/0006-291x(83)90545-4. [DOI] [PubMed] [Google Scholar]
  28. Shiota M., Golden S., Katz J. Lactate metabolism in the perfused rat hindlimb. Biochem J. 1984 Sep 1;222(2):281–292. doi: 10.1042/bj2220281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Snell K., Duff D. A. Branched-chain amino acid metabolism and alanine formation in rat diaphragm muscle in vitro. Effects of dichloroacetate. Biochem J. 1984 Nov 1;223(3):831–835. doi: 10.1042/bj2230831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stacpoole P. W. Effect of dichloroacetate on gluconeogenesis in isolated rat hepatocytes. Metabolism. 1977 Feb;26(2):107–116. doi: 10.1016/0026-0495(77)90046-4. [DOI] [PubMed] [Google Scholar]
  31. Stacpoole P. W., Harman E. M., Curry S. H., Baumgartner T. G., Misbin R. I. Treatment of lactic acidosis with dichloroacetate. N Engl J Med. 1983 Aug 18;309(7):390–396. doi: 10.1056/NEJM198308183090702. [DOI] [PubMed] [Google Scholar]
  32. Start C., Newsholme E. A. The effects of starvation and alloxan-diabetes on the contents of citrate and other metabolic intermediates in rat liver. Biochem J. 1968 Apr;107(3):411–415. doi: 10.1042/bj1070411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
  34. Wells P. G., Moore G. W., Rabin D., Wilkinson G. R., Oates J. A., Stacpoole P. W. Metabolic effects and pharmacokinetics of intravenously administered dichloroacetate in humans. Diabetologia. 1980 Aug;19(2):109–113. doi: 10.1007/BF00421855. [DOI] [PubMed] [Google Scholar]
  35. Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES