Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 14;92(6):2017–2020. doi: 10.1073/pnas.92.6.2017

A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes.

S Kambhampati 1
PMCID: PMC42414  PMID: 7534409

Abstract

Cockroaches are among the most ancient winged insects, the earliest fossils dating back to about 400 million years. Several conflicting phylogenies for cockroach families, subfamilies, and genera have been proposed in the past. In addition, the relationship of Cryptocercidae to other cockroach families and the relationship between the cockroach, Cryptocercus punctulatus, and the termite, Mastotermes darwiniensis, have generated debate. In this paper, a phylogeny for cockroaches, mantids, and termites based on DNA sequence of the mitochondrial ribosomal RNA genes is presented. The results indicated that cockroaches are a monophyletic group, whose sister group is Mantoidea. The inferred relationship among cockroach families was in agreement with the presently accepted phylogeny. However, there was only partial congruence at the subfamily and the generic levels. The phylogeny inferred here does not support a close relationship between C. punctulatus and M. darwiniensis. The apparent synapomorphies of these two species are likely a manifestation of convergent evolution because there are similarities in biology and habitat.

Full text

PDF
2017

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown W. M., Prager E. M., Wang A., Wilson A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18(4):225–239. doi: 10.1007/BF01734101. [DOI] [PubMed] [Google Scholar]
  2. Clary D. O., Wolstenholme D. R. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22(3):252–271. doi: 10.1007/BF02099755. [DOI] [PubMed] [Google Scholar]
  3. DeSalle R., Gatesy J., Wheeler W., Grimaldi D. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science. 1992 Sep 25;257(5078):1933–1936. doi: 10.1126/science.1411508. [DOI] [PubMed] [Google Scholar]
  4. DeSalle R. The phylogenetic relationships of flies in the family Drosophilidae deduced from mtDNA sequences. Mol Phylogenet Evol. 1992 Mar;1(1):31–40. doi: 10.1016/1055-7903(92)90033-d. [DOI] [PubMed] [Google Scholar]
  5. Fang Q., Black W. C., 4th, Blocker H. D., Whitcomb R. F. A phylogeny of New World Deltocephalus-like leafhopper genera based on mitochondrial 16S ribosomal DNA sequences. Mol Phylogenet Evol. 1993 Jun;2(2):119–131. doi: 10.1006/mpev.1993.1012. [DOI] [PubMed] [Google Scholar]
  6. Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
  7. Kambhampati S., Black W. C., 4th, Rai K. S. Random amplified polymorphic DNA of mosquito species and populations (Diptera: Culicidae): techniques, statistical analysis, and applications. J Med Entomol. 1992 Nov;29(6):939–945. doi: 10.1093/jmedent/29.6.939. [DOI] [PubMed] [Google Scholar]
  8. Liu H., Beckenbach A. T. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol Phylogenet Evol. 1992 Mar;1(1):41–52. doi: 10.1016/1055-7903(92)90034-e. [DOI] [PubMed] [Google Scholar]
  9. Mitchell S. E., Cockburn A. F., Seawright J. A. The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization. Genome. 1993 Dec;36(6):1058–1073. doi: 10.1139/g93-141. [DOI] [PubMed] [Google Scholar]
  10. Miyamoto M. M., Kraus F., Ryder O. A. Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6127–6131. doi: 10.1073/pnas.87.16.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nalepa C. A. Ancestral transfer of symbionts between cockroaches and termites: an unlikely scenario. Proc Biol Sci. 1991 Nov 22;246(1316):185–189. doi: 10.1098/rspb.1991.0143. [DOI] [PubMed] [Google Scholar]
  12. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. REHN J. Beziehungen zwischen Nebennierenrinde, Operationsgefährdung und postoperativem Verlauf, dargestellt an den Veränderungen des Differentialblutbildes und der Eosinophilen. Langenbecks Arch Klin Chir Ver Dtsch Z Chir. 1951;268(4):417–429. [PubMed] [Google Scholar]
  14. Roth A., Oei L. O. Zur Prophylaxe und Behandlung von Bestrahlungskomplikationen. Z Arztl Fortbild (Jena) 1967 Mar 15;61(6):277–280. [PubMed] [Google Scholar]
  15. Topal M. D., Fresco J. R. Complementary base pairing and the origin of substitution mutations. Nature. 1976 Sep 23;263(5575):285–289. doi: 10.1038/263285a0. [DOI] [PubMed] [Google Scholar]
  16. Uhlenbusch I., McCracken A., Gellissen G. The gene for the large (16S) ribosomal RNA from the Locusta migratoria mitochondrial genome. Curr Genet. 1987;11(8):631–638. doi: 10.1007/BF00393927. [DOI] [PubMed] [Google Scholar]
  17. Xiong B., Kocher T. D. Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera: Simuliidae). Genome. 1991 Apr;34(2):306–311. doi: 10.1139/g91-050. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES