Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Oct;76(4):1622–1625. doi: 10.1172/JCI112146

Intrathecal triiodothyronine administration causes greater heart rate stimulation in hypothyroid rats than intravenously delivered hormone. Evidence for a central nervous system site of thyroid hormone action.

M Goldman, M B Dratman, F L Crutchfield, A S Jennings, J A Maruniak, R Gibbons
PMCID: PMC424146  PMID: 3840496

Abstract

To determine whether intracerebrally localized iodothyronines produce thyroid hormone-related functional effects, heart rate responses were compared in conscious hypothyroid rats given triiodothyronine (T3) by either the intrathecal or the intravenous route. A significant increase in heart rate occurred within 18 h after 1.5 nmol T3/100 g body wt was delivered intrathecally through a cannula previously placed in the lateral cerebral ventricle. Injection of the same T3 dose intravenously through an indwelling jugular catheter or injection of vehicle only by either route produced no significant increase in heart rate during the 48-h postinjection period of observation. These differences were observed even though integrated serum T3 concentrations were significantly lower after intrathecal than after intravenous T3 injection. The results indicate that thyroid hormone effects on heart rate are exerted within the brain as well as within the heart.

Full text

PDF
1622

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAY G. A., GOODMAN H. M. STUDIES ON THE EARLY EFFECTS OF THYROID HORMONES. Endocrinology. 1965 Feb;76:323–328. doi: 10.1210/endo-76-2-323. [DOI] [PubMed] [Google Scholar]
  2. Beleslin D. B., Samardzić R. Proceedings: Effect of thyroxine on the body temperature after its intraventricular injection into conscious cats. J Physiol. 1974 Apr;238(1):27P–28P. [PubMed] [Google Scholar]
  3. Chernow B., Burman K. D., Johnson D. L., McGuire R. A., O'Brian J. T., Wartofsky L., Georges L. P. T3 may be a better agent than T4 in the critically ill hypothyroid patient: evaluation of transport across the blood-brain barrier in a primate model. Crit Care Med. 1983 Feb;11(2):99–104. doi: 10.1097/00003246-198302000-00009. [DOI] [PubMed] [Google Scholar]
  4. DeGroot L. J., Rue P., Robertson M., Bernal J., Scherberg N. Triiodothyronine stimulates nuclear RNA synthesis. Endocrinology. 1977 Dec;101(6):1690–1700. doi: 10.1210/endo-101-6-1690. [DOI] [PubMed] [Google Scholar]
  5. Dratman M. B., Crutchfield F. L., Axelrod J., Colburn R. W., Thoa N. Localization of triiodothyronine in nerve ending fractions of rat brain. Proc Natl Acad Sci U S A. 1976 Mar;73(3):941–944. doi: 10.1073/pnas.73.3.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dratman M. B., Crutchfield F. L., Gordon J. T., Jennings A. S. Iodothyronine homeostasis in rat brain during hypo- and hyperthyroidism. Am J Physiol. 1983 Aug;245(2):E185–E193. doi: 10.1152/ajpendo.1983.245.2.E185. [DOI] [PubMed] [Google Scholar]
  7. Dratman M. B., Crutchfield F. L. Synaptosomal [125I]triiodothyronine after intravenous [125I]thyroxine. Am J Physiol. 1978 Dec;235(6):E638–E647. doi: 10.1152/ajpendo.1978.235.6.E638. [DOI] [PubMed] [Google Scholar]
  8. Dratman M. B., Futaesaku Y., Crutchfield F. L., Berman N., Payne B., Sar M., Stumpf W. E. Iodine-125-labeled triiodothyronine in rat brain: evidence for localization in discrete neural systems. Science. 1982 Jan 15;215(4530):309–312. doi: 10.1126/science.7053582. [DOI] [PubMed] [Google Scholar]
  9. Emlen W., Segal D. S., Mandell A. J. Thyroid state: effects on pre- and postsynaptic central noradrenergic mechanisms. Science. 1972 Jan 7;175(4017):79–82. doi: 10.1126/science.175.4017.79. [DOI] [PubMed] [Google Scholar]
  10. Jennings A. S., Ferguson D. C., Utiger R. D. Regulation of the conversion of thyroxine to triiodothyronine in the perfused rat liver. J Clin Invest. 1979 Dec;64(6):1614–1623. doi: 10.1172/JCI109623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaciuba-Uśilko H., Sobocińska J., Kozlowski S., Ziemba A. W. The effect of intraventricular thyroxine administration on body temperature in dogs at rest and during physical exercise. Experientia. 1976 Mar 15;32(3):351–352. doi: 10.1007/BF01940833. [DOI] [PubMed] [Google Scholar]
  12. Kaplan M. M., Yaskoski K. A. Phenolic and tyrosyl ring deiodination of iodothyronines in rat brain homogenates. J Clin Invest. 1980 Sep;66(3):551–562. doi: 10.1172/JCI109887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Korner P. I. Integrative neural cardiovascular control. Physiol Rev. 1971 Apr;51(2):312–367. doi: 10.1152/physrev.1971.51.2.312. [DOI] [PubMed] [Google Scholar]
  14. Leonard J. L., Kaplan M. M., Visser T. J., Silva J. E., Larsen P. R. Cerebral cortex responds rapidly to thyroid hormones. Science. 1981 Oct 30;214(4520):571–573. doi: 10.1126/science.7291997. [DOI] [PubMed] [Google Scholar]
  15. Mashio Y., Inada M., Tanaka K., Ishii H., Naito K., Nishikawa M., Takahashi K., Imura H. High affinity 3,5,3'-L-triiodothyronine binding to synaptosomes in rat cerebral cortex. Endocrinology. 1982 Apr;110(4):1257–1261. doi: 10.1210/endo-110-4-1257. [DOI] [PubMed] [Google Scholar]
  16. Miselis R. R., Epstein A. N. Feeding induced by intracerebroventricular 2-deoxy-D-glucose in the rat. Am J Physiol. 1975 Nov;229(5):1438–1447. doi: 10.1152/ajplegacy.1975.229.5.1438. [DOI] [PubMed] [Google Scholar]
  17. Pardridge W. M. Carrier-mediated transport of thyroid hormones through the rat blood-brain barrier: primary role of albumin-bound hormone. Endocrinology. 1979 Sep;105(3):605–612. doi: 10.1210/endo-105-3-605. [DOI] [PubMed] [Google Scholar]
  18. Pietras R. J., Real M. A., Poticha G. S., Bronsky D., Waldstein S. S. Cardiovascular response in hyperthyroidism. The influence of adrenergic-receptor blockade. Arch Intern Med. 1972 Mar;129(3):426–429. [PubMed] [Google Scholar]
  19. Ruiz-Marcos A., Salas J., Sanchez-Toscano F., Escobar del Rey F., Morreale de Escobar G. Effect of neonatal and adult-onset hypothyroidism on pyramidal cells of the rat auditory cortex. Brain Res. 1983 Aug;285(2):205–213. doi: 10.1016/0165-3806(83)90053-6. [DOI] [PubMed] [Google Scholar]
  20. Schwartz H. L., Oppenheimer J. H. Nuclear triiodothyronine receptor sites in brain: probable identity with hepatic receptors and regional distribution. Endocrinology. 1978 Jul;103(1):267–273. doi: 10.1210/endo-103-1-267. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES