Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2014 Nov 13;2(6):e01139-14. doi: 10.1128/genomeA.01139-14

Genome Sequence of “Thalassospira australica” NP3b2T Isolated from St. Kilda Beach, Tasman Sea

Mario López-Pérez a, Francisco Rodriguez-Valera a,, Hayden K Webb b, Russell J Crawford b, Elena P Ivanova b,
PMCID: PMC4241657  PMID: 25395631

Abstract

Here, we present the draft genome of “Thalassospira australica” NP3b2T, a potential poly(ethylene terephthalate) (PET) plastic biodegrader. This genomic information will enhance information on the genetic basis of metabolic pathways for the degradation of PET plastic.

GENOME ANNOUNCEMENT

Plastic pollution in marine ecosystems is a growing environmental concern. Accumulation of large plastic “islands” in ocean gyres demonstrates the abundance of plastic waste in marine environments (1, 2). Plastic waste has substantial impacts on marine wildlife, posing significant entanglement and ingestion hazards (3, 4) and causing considerable financial costs to the shipping industry (5). Unfortunately, this issue cannot be simply solved. Only a few viable, environmentally friendly disposal methods exist; however, microbial biodegradation represents a promising remediation alternative. The bacterial strain prompting this announcement was originally isolated during research into microorganisms that exhibited potential for the degradation of poly(ethylene terephthalate) (PET). PET is a polymer commonly used in the fabrication of water bottles and many other products.

Gram-negative, aerobic, moderately halophilic gammaproteobacteria with the ability to utilize hydrocarbons as the sole carbon and energy sources were incorporated into the genus Thalassospira more than 20 years ago (6). To date, the genus comprises 9 validly named species (7). Currently, there are four Thalassospira strains reported to have their full genomes sequenced (814). Strain NP3b2T was isolated from an enrichment experiment selecting for strains that degrade poly(ethylene terephthalate) (PET) from seawater collected from the first meter below the water’s surface at St. Kilda Beach, Port Phillip Bay, Tasman Sea, Victoria, Australia (15). The specific location of the studies (GPS coordinates) was 37°51′50″ S 144°58′55″ E. The analyses of the genome of this novel Thalassospira species will stimulate further research on the metabolite activity, organic pollutant degradation, physiological and ecological functions, and evolution of the bacteria of the genus Thalassospira.

On the basis of the data generated from in vitro and in silico studies, strain NP3b2T is considered to represent novel species of the genus Thalassospira, for which the name “Thalassospira australica” NP3b2T is proposed (H. K. Webb, S. H. Nguyen, M. López-Pérez, F. Rodriguez-Valera, R. J. Crawford, and E. P. Ivanova, unpublished data). The genome of strain NP3b2T was sequenced using the IlluminaHiSeq 2000 (100-bp paired-end read) sequencing platform (Macrogen, Korea). The generated reads were trimmed and assembled de novo using VELVET, version 0.7.63 (16). The resulting sequence was then submitted to the Microbial Genome Annotation Pipeline (MiGAP) (http://www.migap.org/index.php/en/) (17) and NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP) for auto-annotation. The open reading frames (ORFs), rRNAs, and tRNAs were also predicted using the MetaGeneAnnotator (MGA) (18), RNAmmer (19), and tRNAscan-SE (20). The size of the draft genome of strain NP3b2T was found to be 4,268,334 bp, comprising 32 contigs, with a G+C content of 53.6%. Strain NP3b2T contained 3,934 predicted genes, 3,875 putative coding sequences (CDS), 5 rRNAs, and 55 tRNAs.

The average nucleotide identity (ANI) (21) and the DNA-DNA hybridization (DDH) values between the draft genome of strain NP3b2T and the four strains already published, Thalassospira profundimaris WP0211 (22), T. xiamenensis M-5 (23), T. permensis NBRC 106175 (24), and T. lucentensis QMT2T (25), were 82.2% to 76.6% and 21% to 25.5% (26), respectively, confirming that strain NP3b2T belongs to a new species within the Thalassospira genus.

Nucleotide sequence accession number.

The genome data have been deposited at NCBI under BioProject number PRJNA257045 and accession number JRJE00000000 for “Thalassospira australica” NP3b2T.

ACKNOWLEDGMENTS

This work was supported by projects MICROGEN (Programa CONSOLIDER-INGENIO 2010 CDS2009-00006), CGL2009-12651-C02-01 from the Spanish Ministerio de Ciencia e Innovación, DIMEGEN (PROMETEO/2010/089) and ACOMP/2009/155 from the Generalitat Valenciana and MaCuMBA Project 311975 of the European Commission FP7. FEDER funds supported this project.

Footnotes

Citation López-Pérez M, Rodriguez-Valera F, Webb HK, Crawford RJ, Ivanova EP. 2014. Genome sequence of “Thalassospira australica” NP3b2T isolated from St. Kilda Beach, Tasman Sea. Genome Announc. 2(6):e01139-14. doi: 10.1128/genomeA.01139-14.

REFERENCES

  • 1. Law KL, Morét-Ferguson S, Maximenko NA, Proskurowski G, Peacock EE, Hafner J, Reddy CM. 2010. Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185–1188. 10.1126/science.1192321. [DOI] [PubMed] [Google Scholar]
  • 2. Moore CJ, Moore SL, Leecaster MK, Weisberg SB. 2001. A comparison of plastic and plankton in the north Pacific central gyre. Mar. Pollut. Bull. 42:1297–1300. 10.1016/S0025-326X(01)00114-X. [DOI] [PubMed] [Google Scholar]
  • 3. Azzarello MY, Van Vleet ES. 1987. Marine birds and plastic pollution. Mar. Ecol. Prog. Ser. 37:295–303. 10.3354/meps037295. [DOI] [Google Scholar]
  • 4. Gregory MR. 2009. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B 364:2013–2025. 10.1098/rstb.2008.0265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Sheavly SB, Register KM. 2007. Marine debris & plastics: environmental concerns, sources, impacts and solutions. J. Polym. Environ. 15:301–305. 10.1007/s10924-007-0074-3. [DOI] [Google Scholar]
  • 6. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC. 1992. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol. 42:568–576. 10.1099/00207713-42-4-568. [DOI] [PubMed] [Google Scholar]
  • 7. Euzéby JP. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47:590–592. 10.1099/00207713-47-2-590. [DOI] [PubMed] [Google Scholar]
  • 8. Gärdes A, Kaeppel E, Shehzad A, Seebah S, Teeling H, Yarza P, Glöckner FO, Grossart HP, Ullrich MS. 2010. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand Genomic Sci. 3:97–107. 10.4056/sigs.922139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Grimaud R, Ghiglione JF, Cagnon C, Lauga B, Vaysse PJ, Rodriguez-Blanco A, Mangenot S, Cruveiller S, Barbe V, Duran R, Wu LF, Talla E, Bonin P, Michotey V. 2012. Genome sequence of the marine bacterium Marinobacter hydrocarbonoclasticus SP17, which forms biofilms on hydrophobic organic compounds. J. Bacteriol. 194:3539–3540. 10.1128/JB.00500-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Wang H, Li H, Shao Z, Liao S, Johnstone L, Rensing C, Wang G. 2012. Genome sequence of deep-sea manganese-oxidizing bacterium Marinobacter manganoxydans MnI7-9. J. Bacteriol. 194:899–900. 10.1128/JB.06551-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Cui Z, Gao W, Li Q, Xu G, Zheng L. 2013. Genome sequence of the polycyclic aromatic hydrocarbon-degrading bacterium strain Marinobacter nanhaiticus D15-8WT. Genome Announc. 1(3):e00301-00313. 10.1128/genomeA.00301-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Handley KM, Upton M, Beatson SA, Héry M, Lloyd JR. 2013. Genome sequence of hydrothermal arsenic-respiring bacterium Marinobacter santoriniensis NKSG1T. Genome Announc. 1(3):e00231-00213. 10.1128/genomeA.00231-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Papke RT, de la Haba RR, Infante-Domínguez C, Pérez D, Sánchez-Porro C, Lapierre P, Ventosa A. 2013. Draft genome sequence of the moderately halophilic bacterium Marinobacter lipolyticus strain SM19. Genome Announc. 1(3):e00379-00313. 10.1128/genomeA.00231-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Song L, Ren L, Li X, Yu D, Yu Y, Wang X, Liu G. 2013. Complete genome sequence of Marinobacter sp. BSs20148. Genome Announc. 1(3):e00236-00213. 10.1128/genomeA.00236-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Webb HK, Crawford RJ, Sawabe T, Ivanova EP. 2009. Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes Environ. 24:39–42. 10.1264/jsme2.ME08538. [DOI] [PubMed] [Google Scholar]
  • 16. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821–829. 10.1101/gr.074492.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Sugawara H, Ohyama A, Mori H, Kurokawa K. 2009. Microbial Genome Annotation Pipeline (MiGAP) for diverse users, abstr S-001, p 1–2 20th Int. Conf. Genome Informatics Kanagawa, Japan. [Google Scholar]
  • 18. Noguchi H, Taniguchi T, Itoh T. 2008. MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 15:387–396. 10.1093/dnares/dsn027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100–3108. 10.1093/nar/gkm160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964. 10.1093/nar/25.5.0955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Richter M, Rosselló-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106:19126–19131. 10.1073/pnas.0906412106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Lai Q, Shao Z. 2012. Genome sequence of Thalassospira profundimaris type strain WP0211. J. Bacteriol. 194:6956. 10.1128/JB.01903-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Lai Q, Shao Z. 2012. Genome sequence of Thalassospira xiamenensis type strain M-5. J. Bacteriol. 194:6957. 10.1128/JB.01904-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Plotnikova EG, Anan’ina LN, Krausova VI, Ariskina EV, Prisyazhnaya NV, Lebedev AT, Demakov VA, Evtushenko LI. 2011. Thalassospira permensis sp. nov., a new terrestrial halotolerant bacterium isolated from a naphthalene-utilizing microbial consortium. Mikrobiologiia 80:691–699. [PubMed] [Google Scholar]
  • 25. Kyrpides NC, Woyke T, Eisen JA, Garrity G, Lilburn TG, Beck BJ, Whitman WB, Hugenholtz P, Klenk H-P. 2014. Genomic encyclopedia of type strains, phase I: the one thousand microbial genomes (KMG-I) project. Stand Genomic Sci. 9:1278–1296. 10.4056/sigs.5068949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Auch AF, von Jan M, Klenk HP, Göker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomics Sci. 2:117–134. 10.4056/sigs.531120. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES