Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Mar;79(3):710–714. doi: 10.1172/JCI112875

A1 and A2 adenosine receptors in rabbit cortical collecting tubule cells. Modulation of hormone-stimulated cAMP.

L J Arend, W K Sonnenburg, W L Smith, W S Spielman
PMCID: PMC424181  PMID: 2434528

Abstract

Adenosine analogs were used to investigate the cellular mechanisms by which adenosine may alter renal tubular function. Cultured rabbit cortical collecting tubule (RCCT) cells, isolated by immunodissection, were treated with 5'-N-ethylcarboxamideadenosine (NECA), N6-cyclohexyladenosine (CHA), and R-N6-phenylisopropyladenosine (PIA). All three analogs produced both dose-dependent inhibition and stimulation of RCCT cell cyclic AMP (cAMP) production. Stimulation of cAMP accumulation occurred at analog concentrations of 0.1 microM to 100 microM with the rank order of potency NECA greater than PIA greater than CHA. Inhibition occurred at concentrations of 1 nM to 1 microM with the rank order of potency CHA greater than PIA greater than NECA. These effects on cAMP production were inhibited by 1,3-diethyl-8-phenylxanthine and isobutylmethylxanthine. CHA (50 nM) blunted AVP- and isoproterenol-stimulated cAMP accumulation. This modulation of hormone-induced cAMP production was abolished by pretreatment of RCCT cells with pertussis toxin. Prostaglandin E2 production was unaffected by 0.1 mM CHA. These findings indicate the presence of both inhibitory (A1) and stimulatory (A2) receptors for adenosine in RCCT cells. Moreover, occupancy of the A1 receptor causes inhibition of both basal and hormone-stimulated cAMP formation through an action on the inhibitory guanine nucleotide-binding regulatory component, Ni, of the adenylate cyclase system.

Full text

PDF
710

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud H. E., Dousa T. P. Action of adenosine on cyclic 3',5'-nucleotides in glomeruli. Am J Physiol. 1983 Jun;244(6):F633–F638. doi: 10.1152/ajprenal.1983.244.6.F633. [DOI] [PubMed] [Google Scholar]
  2. Bruns R. F. Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Can J Physiol Pharmacol. 1980 Jun;58(6):673–691. doi: 10.1139/y80-110. [DOI] [PubMed] [Google Scholar]
  3. Churchill P. C. Renal effects of 2-chloroadenosine and their antagonism by aminophylline in anesthetized rats. J Pharmacol Exp Ther. 1982 Aug;222(2):319–323. [PubMed] [Google Scholar]
  4. Coulson R., Harrington W. W. Renal metabolism of N6,O2'-dibutyryl adenosine 3',5'-monophosphate. Am J Physiol. 1979 Jul;237(1):F75–F84. doi: 10.1152/ajprenal.1979.237.1.F75. [DOI] [PubMed] [Google Scholar]
  5. Daly J. W. Adenosine receptors: targets for future drugs. J Med Chem. 1982 Mar;25(3):197–207. doi: 10.1021/jm00345a001. [DOI] [PubMed] [Google Scholar]
  6. Daly J. W., Bruns R. F., Snyder S. H. Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life Sci. 1981 May 11;28(19):2083–2097. doi: 10.1016/0024-3205(81)90614-7. [DOI] [PubMed] [Google Scholar]
  7. Dillingham M. A., Anderson R. J. Purinergic regulation of basal and arginine vasopressin-stimulated hydraulic conductivity in rabbit cortical collecting tubule. J Membr Biol. 1985;88(3):277–281. doi: 10.1007/BF01871091. [DOI] [PubMed] [Google Scholar]
  8. Dobbins J. W., Laurenson J. P., Forrest J. N., Jr Adenosine and adenosine analogues stimulate adenosine cyclic 3', 5'-monophosphate-dependent chloride secretion in the mammalian ileum. J Clin Invest. 1984 Sep;74(3):929–935. doi: 10.1172/JCI111511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fain J. N., Malbon C. C. Regulation of adenylate cyclase by adenosine. Mol Cell Biochem. 1979 Jun 15;25(3):143–169. doi: 10.1007/BF00235364. [DOI] [PubMed] [Google Scholar]
  10. Frandsen E. K., Krishna G. A simple ultrasensitive method for the assay of cyclic AMP and cyclic GMP in tissues. Life Sci. 1976 Mar 1;18(5):529–541. doi: 10.1016/0024-3205(76)90331-3. [DOI] [PubMed] [Google Scholar]
  11. Garcia-Perez A., Smith W. L. Apical-basolateral membrane asymmetry in canine cortical collecting tubule cells. Bradykinin, arginine vasopressin, prostaglandin E2 interrelationships. J Clin Invest. 1984 Jul;74(1):63–74. doi: 10.1172/JCI111419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garcia-Perez A., Smith W. L. Use of monoclonal antibodies to isolate cortical collecting tubule cells: AVP induces PGE release. Am J Physiol. 1983 Mar;244(3):C211–C220. doi: 10.1152/ajpcell.1983.244.3.C211. [DOI] [PubMed] [Google Scholar]
  13. Grenier F. C., Rollins T. E., Smith W. L. Kinin-induced prostaglandin synthesis by renal papillary collecting tubule cells in culture. Am J Physiol. 1981 Jul;241(1):F94–104. doi: 10.1152/ajprenal.1981.241.1.F94. [DOI] [PubMed] [Google Scholar]
  14. Hedqvist P., Fredholm B. B., Olundh S. Antagonistic effects of theophylline and adenosine on adrenergic neuroeffector transmission in the rabbit kidney. Circ Res. 1978 Oct;43(4):592–598. doi: 10.1161/01.res.43.4.592. [DOI] [PubMed] [Google Scholar]
  15. Huang M., Drummond G. I. Effect of adenosine on cyclic AMP accumulation in ventricular myocardium. Biochem Pharmacol. 1976 Dec 15;25(24):2713–2719. doi: 10.1016/0006-2952(76)90262-8. [DOI] [PubMed] [Google Scholar]
  16. Katada T., Bokoch G. M., Northup J. K., Ui M., Gilman A. G. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. J Biol Chem. 1984 Mar 25;259(6):3568–3577. [PubMed] [Google Scholar]
  17. Lang M. A., Preston A. S., Handler J. S., Forrest J. N., Jr Adenosine stimulates sodium transport in kidney A6 epithelia in culture. Am J Physiol. 1985 Sep;249(3 Pt 1):C330–C336. doi: 10.1152/ajpcell.1985.249.3.C330. [DOI] [PubMed] [Google Scholar]
  18. Londos C., Cooper D. M., Schlegel W., Rodbell M. Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5362–5366. doi: 10.1073/pnas.75.11.5362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  21. McKenzie S. G., Bär H. P. On the mechanism of adenyl cyclase inhibition by adenosine. Can J Physiol Pharmacol. 1973 Mar;51(3):190–196. doi: 10.1139/y73-027. [DOI] [PubMed] [Google Scholar]
  22. Molski T. F., Naccache P. H., Marsh M. L., Kermode J., Becker E. L., Sha'afi R. I. Pertussis toxin inhibits the rise in the intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: possible role of the "G proteins" in calcium mobilization. Biochem Biophys Res Commun. 1984 Oct 30;124(2):644–650. doi: 10.1016/0006-291x(84)91603-6. [DOI] [PubMed] [Google Scholar]
  23. Nakamura T., Ui M. Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. A possible involvement of the toxin-specific substrate in the Ca2+-mobilizing receptor-mediated biosignaling system. J Biol Chem. 1985 Mar 25;260(6):3584–3593. [PubMed] [Google Scholar]
  24. Newman M. E., Levitzki A. Desensitization of normal rat kidney cells to adenosine. Biochem Pharmacol. 1983 Jan 1;32(1):137–140. doi: 10.1016/0006-2952(83)90665-2. [DOI] [PubMed] [Google Scholar]
  25. Osswald H., Nabakowski G., Hermes H. Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem. 1980;12(1-2):263–267. doi: 10.1016/0020-711x(80)90082-8. [DOI] [PubMed] [Google Scholar]
  26. Osswald H. Renal effects of adenosine and their inhibition by theophylline in dogs. Naunyn Schmiedebergs Arch Pharmacol. 1975;288(1):79–86. doi: 10.1007/BF00501815. [DOI] [PubMed] [Google Scholar]
  27. Osswald H., Schmitz H. J., Kemper R. Renal action of adenosine: effect on renin secretion in the rat. Naunyn Schmiedebergs Arch Pharmacol. 1978 May;303(1):95–99. doi: 10.1007/BF00496190. [DOI] [PubMed] [Google Scholar]
  28. Osswald H., Spielman W. S., Knox F. G. Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res. 1978 Sep;43(3):465–469. doi: 10.1161/01.res.43.3.465. [DOI] [PubMed] [Google Scholar]
  29. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  30. Smith C. D., Cox C. C., Snyderman R. Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein. Science. 1986 Apr 4;232(4746):97–100. doi: 10.1126/science.3006254. [DOI] [PubMed] [Google Scholar]
  31. Souness J. E., Chagoya de Sánchez V. The stimulation of [1-14C]glucose oxidation in isolated fat cells by N6-methyladenosine. An effect independent of cyclic AMP. FEBS Lett. 1981 Mar 23;125(2):249–252. doi: 10.1016/0014-5793(81)80731-4. [DOI] [PubMed] [Google Scholar]
  32. Spielman W. S. Antagonistic effect of theophylline on the adenosine-induced decreased in renin release. Am J Physiol. 1984 Aug;247(2 Pt 2):F246–F251. doi: 10.1152/ajprenal.1984.247.2.F246. [DOI] [PubMed] [Google Scholar]
  33. Spielman W. S., Britton S. L., Fiksen-Olsen M. J. Effect of adenosine on the distribution of renal blood flow in dogs. Circ Res. 1980 Mar;46(3):449–456. doi: 10.1161/01.res.46.3.449. [DOI] [PubMed] [Google Scholar]
  34. Spielman W. S., Sonnenburg W. K., Allen M. L., Arend L. J., Gerozissis K., Smith W. L. Immunodissection and culture of rabbit cortical collecting tubule cells. Am J Physiol. 1986 Aug;251(2 Pt 2):F348–F357. doi: 10.1152/ajprenal.1986.251.2.F348. [DOI] [PubMed] [Google Scholar]
  35. Spielman W. S., Thompson C. I. A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am J Physiol. 1982 May;242(5):F423–F435. doi: 10.1152/ajprenal.1982.242.5.F423. [DOI] [PubMed] [Google Scholar]
  36. Tagawa H., Vander A. J. Effects of adenosine compounds on renal function and renin secretion in dogs. Circ Res. 1970 Mar;26(3):327–338. doi: 10.1161/01.res.26.3.327. [DOI] [PubMed] [Google Scholar]
  37. Teitelbaum I., Berl T. Effects of calcium on vasopressin-mediated cyclic adenosine monophosphate formation in cultured rat inner medullary collecting tubule cells. Evidence for the role of intracellular calcium. J Clin Invest. 1986 May;77(5):1574–1583. doi: 10.1172/JCI112473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wysocki L. J., Sato V. L. "Panning" for lymphocytes: a method for cell selection. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2844–2848. doi: 10.1073/pnas.75.6.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES