Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Nov;76(5):1828–1836. doi: 10.1172/JCI112175

Chloride secretory mechanism induced by prostaglandin E1 in a colonic epithelial cell line.

A Weymer, P Huott, W Liu, J A McRoberts, K Dharmsathaphorn
PMCID: PMC424218  PMID: 2997290

Abstract

Confluent T84 monolayers grown on permeable supports and mounted in a modified Ussing chamber secrete chloride (Cl-) in response to prostaglandin E1. The threshold stimulation was observed at 10(-9) M and a maximal effect at 10(-6) M. Unidirectional flux studies showed an increase in both serosal to mucosal and mucosal to serosal Cl- fluxes with 10(-6) M prostaglandin E1; the increase in serosal to mucosal Cl- flux exceeded the increase in mucosal to serosal flux, resulting in net Cl- secretion. Na+ transport was not affected in either direction and the changes in net Cl- flux correlated well with the changes in short circuit current. To identify the electrolyte transport pathways involved in the Cl- secretory process, the effect of prostaglandin E1 on ion fluxes was tested in the presence of putative inhibitors. Bumetanide was used as an inhibitor for the basolaterally localized Na+,K+,Cl- cotransport system whose existence and bumetanide sensitivity have been verified in earlier studies (Dharmsathaphorn et al. 1984. J. Clin. Invest. 75:462-471). Barium was used as an inhibitor for the K+ efflux pathway on the basolateral membrane whose existence and barium sensitivity were demonstrated in this study by preloading the monolayers with 86Rb+ (as a tracer for K+) and simultaneously measuring 86Rb+ efflux into both serosal and mucosal reservoirs. Both bumetanide and barium inhibited the net chloride secretion induced by prostaglandin E1 suggesting the involvement of the Na+,K+,Cl- cotransport and a K+ efflux pathways on the basolateral membrane in the Cl- secretory process. The activation of another Cl- transport pathway on the apical membrane by prostaglandin E1 was suggested by Cl- uptake studies. Our findings indicate that the prostaglandin E1-stimulated Cl- secretion, which is associated with an increase in cyclic AMP level, intimately involves (a) a bumetanide-sensitive Na+,K+,Cl- cotransport pathway that serves as a Cl- uptake step across the basolateral membrane, (b) the stimulation of a barium-sensitive K+ efflux mechanism on the basolateral membrane that most likely acts to recycle K+, and (c) the activation of a Cl- transport pathway on the apical membrane that serves as a Cl- exit pathway.

Full text

PDF
1828

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Swenson R. P., Jr, Taylor S. R. Block of squid axon K channels by internally and externally applied barium ions. J Gen Physiol. 1982 Nov;80(5):663–682. doi: 10.1085/jgp.80.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bakker-Grunwald T. Hormone-induced diuretic-sensitive potassium transport in turkey erythrocytes is anion dependent. Biochim Biophys Acta. 1981 Mar 6;641(2):427–431. doi: 10.1016/0005-2736(81)90500-9. [DOI] [PubMed] [Google Scholar]
  3. Binder H. J., Rawlins C. L. Electrolyte transport across isolated large intestinal mucosa. Am J Physiol. 1973 Nov;225(5):1232–1239. doi: 10.1152/ajplegacy.1973.225.5.1232. [DOI] [PubMed] [Google Scholar]
  4. Bukhave K., Rask-Madsen J. Saturation kinetics applied to in vitro effects of low prostaglandin E2 and F 2 alpha concentrations on ion transport across human jejunal mucosa. Gastroenterology. 1980 Jan;78(1):32–42. [PubMed] [Google Scholar]
  5. Candia O. A., Schoen H. F. Selective effects of bumetanide on chloride transport in bullfrog cornea. Am J Physiol. 1978 Apr;234(4):F297–F301. doi: 10.1152/ajprenal.1978.234.4.F297. [DOI] [PubMed] [Google Scholar]
  6. Cartwright C. A., McRoberts J. A., Mandel K. G., Dharmsathaphorn K. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line. J Clin Invest. 1985 Nov;76(5):1837–1842. doi: 10.1172/JCI112176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chipperfield A. R. An effect of chloride on (Na+K) co-transport in human red blood cells. Nature. 1980 Jul 17;286(5770):281–282. doi: 10.1038/286281a0. [DOI] [PubMed] [Google Scholar]
  9. Coleman D. L., Tuet I. K., Widdicombe J. H. Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am J Physiol. 1984 Mar;246(3 Pt 1):C355–C359. doi: 10.1152/ajpcell.1984.246.3.C355. [DOI] [PubMed] [Google Scholar]
  10. Degnan K. J., Karnaky K. J., Jr, Zadunaisky J. A. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J Physiol. 1977 Sep;271(1):155–191. doi: 10.1113/jphysiol.1977.sp011995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dharmsathaphorn K., Mandel K. G., Masui H., McRoberts J. A. Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl- cotransport system. J Clin Invest. 1985 Feb;75(2):462–471. doi: 10.1172/JCI111721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dharmsathaphorn K., McRoberts J. A., Mandel K. G., Tisdale L. D., Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol. 1984 Feb;246(2 Pt 1):G204–G208. doi: 10.1152/ajpgi.1984.246.2.G204. [DOI] [PubMed] [Google Scholar]
  13. Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
  14. Garay R., Adragna N., Canessa M., Tosteson D. Outward sodium and potassium cotransport in human red cells. J Membr Biol. 1981;62(3):169–174. doi: 10.1007/BF01998162. [DOI] [PubMed] [Google Scholar]
  15. Geck P., Pietrzyk C., Burckhardt B. C., Pfeiffer B., Heinz E. Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells. Biochim Biophys Acta. 1980 Aug 4;600(2):432–447. doi: 10.1016/0005-2736(80)90446-0. [DOI] [PubMed] [Google Scholar]
  16. Haas M., McManus T. J. Bumetanide inhibits (Na + K + 2Cl) co-transport at a chloride site. Am J Physiol. 1983 Sep;245(3):C235–C240. doi: 10.1152/ajpcell.1983.245.3.C235. [DOI] [PubMed] [Google Scholar]
  17. Handler J. S., Perkins F. M., Johnson J. P. Studies of renal cell function using cell culture techniques. Am J Physiol. 1980 Jan;238(1):F1–F9. doi: 10.1152/ajprenal.1980.238.1.F1. [DOI] [PubMed] [Google Scholar]
  18. Handler J. S., Steele R. E., Sahib M. K., Wade J. B., Preston A. S., Lawson N. L., Johnson J. P. Toad urinary bladder epithelial cells in culture: maintenance of epithelial structure, sodium transport, and response to hormones. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4151–4155. doi: 10.1073/pnas.76.8.4151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harper J. F., Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res. 1975;1(4):207–218. [PubMed] [Google Scholar]
  20. Heintze K., Stewart C. P., Frizzell R. A. Sodium-dependent chloride secretion across rabbit descending colon. Am J Physiol. 1983 Apr;244(4):G357–G365. doi: 10.1152/ajpgi.1983.244.4.G357. [DOI] [PubMed] [Google Scholar]
  21. Kimberg D. V., Field M., Gershon E., Henderson A. Effects of prostaglandins and cholera enterotoxin on intestinal mucosal cyclic AMP accumulation. Evidence against an essential role for prostaglandins in the action of toxin. J Clin Invest. 1974 Mar;53(3):941–949. doi: 10.1172/JCI107635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kirk K. L., Dawson D. C. Basolateral potassium channel in turtle colon. Evidence for single-file ion flow. J Gen Physiol. 1983 Sep;82(3):297–313. doi: 10.1085/jgp.82.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klotz U., Maier K., Fischer C., Heinkel K. Therapeutic efficacy of sulfasalazine and its metabolites in patients with ulcerative colitis and Crohn's disease. N Engl J Med. 1980 Dec 25;303(26):1499–1502. doi: 10.1056/NEJM198012253032602. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Madara J. L., Dharmsathaphorn K. Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol. 1985 Dec;101(6):2124–2133. doi: 10.1083/jcb.101.6.2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matuchansky C., Bernier J. J. Effect of prostaglandin E 1 on glucose, water, and electrolyte absorption in the human jejunum. Gastroenterology. 1973 Jun;64(6):1111–1118. [PubMed] [Google Scholar]
  27. McLennan W. L., Machen T. E., Zeuthen T. Ba2+ inhibition of electrogenic Cl- secretion in vitro frog and piglet gastric mucosa. Am J Physiol. 1980 Sep;239(3):G151–G160. doi: 10.1152/ajpgi.1980.239.3.G151. [DOI] [PubMed] [Google Scholar]
  28. McRoberts J. A., Erlinger S., Rindler M. J., Saier M. H., Jr Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. Evidence for the cotransport of Na+, K+, and Cl-. J Biol Chem. 1982 Mar 10;257(5):2260–2266. [PubMed] [Google Scholar]
  29. Musch M. W., Orellana S. A., Kimberg L. S., Field M., Halm D. R., Krasny E. J., Jr, Frizzell R. A. Na+-K+-Cl- co-transport in the intestine of a marine teleost. Nature. 1982 Nov 25;300(5890):351–353. doi: 10.1038/300351a0. [DOI] [PubMed] [Google Scholar]
  30. Nagel W. Inhibition of potassium conductance by barium in frog skin epithelium. Biochim Biophys Acta. 1979 Apr 4;552(2):346–357. doi: 10.1016/0005-2736(79)90289-x. [DOI] [PubMed] [Google Scholar]
  31. O'Neil R. G. Voltage-dependent interaction of barium and cesium with the potassium conductance of the cortical collecting duct apical cell membrane. J Membr Biol. 1983;74(2):165–173. doi: 10.1007/BF01870505. [DOI] [PubMed] [Google Scholar]
  32. Palfrey H. C., Greengard P., Feit P. W. Specific inhibition by "loop" diuretics of an anion-dependent Na+ + K+ cotransport system in avian erythrocytes. Ann N Y Acad Sci. 1980;341:134–138. doi: 10.1111/j.1749-6632.1980.tb47168.x. [DOI] [PubMed] [Google Scholar]
  33. Palfrey H. C., Silva P., Epstein F. H. Sensitivity of cAMP-stimulated salt secretion in shark rectal gland to "loop" diuretics. Am J Physiol. 1984 Mar;246(3 Pt 1):C242–C246. doi: 10.1152/ajpcell.1984.246.3.C242. [DOI] [PubMed] [Google Scholar]
  34. Petersen K. U., Reuss L. Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J Gen Physiol. 1983 May;81(5):705–729. doi: 10.1085/jgp.81.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Racusen L. C., Binder H. J. Alteration of large intestinal electrolyte transport by vasoactive intestinal polypeptide in the rat. Gastroenterology. 1977 Oct;73(4 Pt 1):790–796. [PubMed] [Google Scholar]
  36. Rampton D. S., Sladen G. E., Youlten L. J. Rectal mucosal prostaglandin E2 release and its relation to disease activity, electrical potential difference, and treatment in ulcerative colitis. Gut. 1980 Jul;21(7):591–596. doi: 10.1136/gut.21.7.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rangachari P. K. Ba++ on the resting frog stomach: effects on electrical and secretory parameters. Am J Physiol. 1975 Feb;228(2):511–517. doi: 10.1152/ajplegacy.1975.228.2.511. [DOI] [PubMed] [Google Scholar]
  38. Reuss L., Cheung L. Y., Grady T. P. Mechanisms of cation permeation across apical cell membrane of Necturus gallbladder: effects of luminal pH and divalent cations on K+ and Na+ permeability. J Membr Biol. 1981 Apr 30;59(3):211–224. doi: 10.1007/BF01875426. [DOI] [PubMed] [Google Scholar]
  39. SOLOMON A. K. Equations for tracer experiments. J Clin Invest. 1949 Nov;28(6 Pt 1):1297–1307. doi: 10.1172/JCI102197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schwarz W., Passow H. Ca2+-activated K+ channels in erythrocytes and excitable cells. Annu Rev Physiol. 1983;45:359–374. doi: 10.1146/annurev.ph.45.030183.002043. [DOI] [PubMed] [Google Scholar]
  41. Sharon P., Ligumsky M., Rachmilewitz D., Zor U. Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology. 1978 Oct;75(4):638–640. [PubMed] [Google Scholar]
  42. Shorofsky S. R., Field M., Fozzard H. A. The cellular mechanism of active chloride secretion in vertebrate epithelia: studies in intestine and trachea. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):597–607. doi: 10.1098/rstb.1982.0155. [DOI] [PubMed] [Google Scholar]
  43. Simmons N. L. Ion transport in 'tight' epithelial monolayers of MDCK cells. J Membr Biol. 1981 Apr 15;59(2):105–114. doi: 10.1007/BF01875708. [DOI] [PubMed] [Google Scholar]
  44. Welsh M. J. Anthracene-9-carboxylic acid inhibits an apical membrane chloride conductance in canine tracheal epithelium. J Membr Biol. 1984;78(1):61–71. doi: 10.1007/BF01872533. [DOI] [PubMed] [Google Scholar]
  45. Welsh M. J., Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile. J Membr Biol. 1982;70(3):227–238. doi: 10.1007/BF01870565. [DOI] [PubMed] [Google Scholar]
  46. Widdicombe J. H., Nathanson I. T., Highland E. Effects of "loop" diuretics on ion transport by dog tracheal epithelium. Am J Physiol. 1983 Nov;245(5 Pt 1):C388–C396. doi: 10.1152/ajpcell.1983.245.5.C388. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES