Abstract
• Background and Aims Plant species are considered as a good source of dietary proteins, although the nutritional quality of proteins depends on their amino acid composition. In this work the protein content and amino acid composition of nutlets of 21 Teucrium taxa (Lamiaceae) from Spain were analysed and their nutritional quality was compared with the minimum values established by the Food and Agriculture Organization of the United Nations (FAO). In addition, the amino acid composition was evaluated as a chemical character to clarify the taxonomic complexity in this genus.
• Methods Amino acid content of nutlets was determined after derivatization with diethyl ethoxymethylenemalonate by high-performance liquid chromatography. Previously, nutlets samples were hydrolysed and incubated in an oven at 110 °C for 24 h.
• Key Results The protein content was variable, ranging from 6·4 % in T. dunense to 43·8 % in T. algarbiense. According to the FAO values all taxa contain satisfactory amounts of leucine, threonine and valine and are deficient in lysine. The similarity analysis of Teucrium taxa using amino acid composition data did not clearly reflect the infrageneric classification of this genus.
• Conclusions Annual species, such as T. spinosum, T. aristatum and T. resupinatum showed a better balanced amino acid composition. The dendrogram partly matched with the karyological complexity of Teucrium. No correlation between amino acid composition and habitat has been observed, showing that Teucrium nutlet amino acid composition may not be strongly influenced by the environment.
Key words: Teucrium, Lamiaceae, nutlets, protein, amino acids, taxonomy, karyology
INTRODUCTION
To find new protein sources it is necessary to continue to study the amino acid profile in wild plants (seeds, leaves, roots, etc.). This will allow the elaboration of human diets and animal feeds, as the nutritional quality of proteins depends on their amino acid composition. In general, Teucrium species usually grow in poor soils with limited water resources. So, the low nutritional requirements and bactericidal properties of Lamiaceae (Mabberley, 1978; Richardson, 1992) make Teucrium interesting from an economic point of view. Moreover, research on amino acid composition as a taxonomic character was carried out in some previous studies (Pettigrew and Watson, 1975; Yeoh and Watson, 1981; Yeoh et al., 1984, 1986, 1992), although none of them concerns Lamiaceae in particular.
Teucrium is a complex genus and, like many other Lamiaceae, is widely distributed in the Mediterranean region. Different taxa are shrubs, dwarf shrubs and perennial, biennial or annual herbs, and they are found in different habitats including cultivated fields, sand dunes or mountain rocks at high altitudes.
The taxonomic complexity of Teucrium is reflected in the changes that the systematics of this group have undergone since the first revision (Schreber, 1773). Several studies using different characteristics attempt to clarify the infrageneric delimitation of Teucrium. For example, pollen morphology (Ojeda and Díez, 1992; Díez et al., 1993), karyology (Valdés-Bermejo and Sánchez-Crespo, 1978), indumentum characteristics (Manzanares et al., 1983; Bini Maleci and Servettaz, 1991; Güemes et al., 1992; El Oualidi and Puech, 1993; Navarro and El Oualidi, 2000a) or phytochemistry (Harborne et al., 1986; Velasco-Negueruela and Pérez-Alonso, 1990) have been used.
In the present study, the amino acid composition of nutlet proteins of 21 taxa from Spain was investigated. According to Navarro and El Oualidi (2000b), these taxa belong to six sections: sect. Teucrium, sect. Scorodonia, sect. Spinularia, sect. Scordium, sect. Chamaedrys and sect. Polium (see Table 1), the latter being the largest section. The taxa examined in this section are included in three subsections: subsect. Polium (T. algarbiense, T. capitatum, T. dunense, T. lusitanicum, T. reverchonii, T. similatum and T. turdetanum); subsect. Rotundifolia (T. rotundifolium); and subsect. Simplicipilosa (T. haenseleri).
Table 1.
Localities and collection dates of wild populations studied from Spain. A = annual species; P = perennial species
| Species |
Localities and voucher |
|||
|---|---|---|---|---|
| Section Teucrium | ||||
| T. aristatum Pérez Lara | A | SEVILLA. Between Carmona and La Luisiana, 19 May 1967, Mayor & Ladero (MAF 169200). | ||
| T. campanulatum L. | P | VALENCIA. Benicarló, 17 Aug. 1908, Sennen (SEV 99082). | ||
| T. fruticans L. | P | CÁDIZ. Chiclana, 22 Mar. 1997, Martín Mosquero (SEV 153731).Between Arcos de la Frontera and San José del Valle, 16 Apr. 1998, Martín Mosquero (SEV 154000). HUELVA. Between Cortegana and Almonaster la Real, 27 May 1996, Martín Mosquero & Ocaña (SEV 153353). SEVILLA. Cazalla de la Sierra, 5 Mar. 1997, Martín Mosquero (SEV 153712). Between San Nicolás del Puerto and Constantina, 21 May 1996, Martín Mosquero (SEV 153347). La Puebla del Río, 5 Mar. 1997, Martín Mosquero (SEV 153716). | ||
| T. pseudochamaepitys L. | P | CÁDIZ. Between Jerez and Medina Sidonia, 5 May 1998, Martín Mosquero (SEV 154003). CÓRDOBA. Rute, Pico de las Cruces, 25 Jun. 1996, Martín Mosquero & Ocaña (SEV 153499). Between Priego de Córdoba and Algarinejo, 26 Jun. 1996, Martín Mosquero & Ocaña (SEV 153512). Between Montoro and Cárdena, 24 Mar. 1997, Martín Mosquero & Ocaña (SEV 153736). Embalse de Iznájar, 9 May 1997, Martín Mosquero & Ocaña (SEV 153810). | ||
| Section Scorodonia | ||||
| T. scorodonia L. subsp. scorodonia | P | HUELVA. Between Cortelazor and Hinojales, 8 Jun. 1997 Martín Mosquero (SEV 153866). Between Almonaster and Gil Márquez, 21 Jul. 1998, Gutiérrez & Martín Mosquero (SEV 154182). Los Marines, 21 Jul. 1998, Gutiérrez & Martín Mosquero (SEV 154183). | ||
| T. scorodonia subsp. baeticum (Boiss. & Reut.) Tutin. | P | CÁDIZ. Algeciras, Sierra del Bujeo, 28 Jun. 1996, Martín Mosquero (SEV 153542). Los Barrios, La Montera del Torero, 17 Jul. 1996, Juan & Martín Mosquero (SEV 153618). Algeciras, Barranco del Cobre, 25 Jul. 1997, Martín Mosquero & Ocaña (SEV 153857). | ||
| Section Spinularia | ||||
| T. botrys L. | A | CÁDIZ. El Bosque, 20 May 1983, Aparicio (SEV 91201). Ubrique, 9 Jun. 1983, Aparicio García & Silvestre (SEV 91203). Between Zahara de la Sierra and Grazalema, Sierra Margarita, 7 Jul. 1998, Aparicio & Martín Mosquero (SEV 154174). | ||
| T. resupinatum Desf. | A | CÁDIZ. Between Medina Sidonia and Algeciras, 17 Jul. 1996, Juan & Martín Mosquero (SEV 157700). Zahara de los Atunes, 21 Jun. 1998, Martín Mosquero & Salgueiro (SEV 154017). Between Algodonales and Zahara de la Sierra, 22 May 1998, Juan & Pastor (SEV 154007). | ||
| T. spinosum L. | A | CÁDIZ. Jerez, around of Laguna de Medina, 16 Jul. 1997, Martín Mosquero (SEV 153949). Zahara de la Sierra, 5 Aug. 1997, Martín Mosquero (SEV 153969). CÓRDOBA. Between Carcabuey and Cabra, 14 May 1997, Martín Mosquero & Ocaña (SEV 153828). | ||
| Section Scordium | ||||
| T. scordium L. subsp. scordioides (Schreb.) Maire & Petitm. | P | CÓRDOBA. Between Palma del Río and Hornachuelos, Arroyo Guadalora, 30 Jul. 1996, Martín Mosquero (SEV153651). Almodóvar del Río, 7 Sep. 1998, Martín Mosquero & Salgueiro (SEV 157695). HUELVA. Between Hinojos and Almonte, 16 Sep. 1996, Martín Mosquero (SEV 153681). CÓRDOBA. Valverde del Camino, 29 Oct. 1996, Martín Mosquero & Santa-Bárbara (SEV 153700). | ||
| Section Chamaedrys | ||||
| T. chamaedrys L. | P | CÁDIZ. Grazalema, Sierra de Zafalgar, 14 Jun. 1997, Aparicio, Martín Mosquero & Ocaña (SEV 153939). GUADALAJARA. Muriel, 1 Sep. 1974, Silvestre (SEV 91034). TERUEL. Puerto de la Calamocha, 9 Aug. 1951, Galiano (SEV 11660). | ||
| T. webbianum Boiss. | P | CÓRDOBA. Between Priego de Córdoba and Rute, Pico Bermejo, 30 Jun. 1997, Martín Mosquero (SEV 153905). GRANADA. Sierra de Harana, 17 Jul. 1973, Socorro & Hurtado (SEV 55527). Sierra de Baza, 22 Jul. 1975, Cabezudo & Talavera (SEV 91535). | ||
| Section Polium subsect. Polium | ||||
| T. algarbiense (Cout.) Cout. | P | HUELVA. Between Ayamonte and Villablanca, 27 Jun. 1996, Juan & Martín Mosquero (SEV 153527). Sanlúcar de Guadiana, 3 Jul. 1996, Martín Mosquero & Ocaña (SEV 153571). Between Puerto Moral and Corteconcepción, 11 Jul. 1996, Martín Mosquero & Ocaña (SEV 153601). Ayamonte, 27 Apr. 1997, Santa-Bárbara (SEV 153787). | ||
| T. capitatum L. | P | CÁDIZ. Bornos, 13 Jun. 1996, Martín Mosquero & Ocaña (SEV 153417). Algodonales, 21 Jun. 1996, Martín Mosquero & Ocaña (SEV 153791). Between Coripe and Algodonales, 3 Jul. 1997, Martín Mosquero & Ocaña (SEV 153924). CÓRDOBA. Rute, Pico de las Cruces, 25 Jun. 1996, Martín Mosquero & Ocaña (SEV 153503). Between Priego de Córdoba & Algarinejo, 26 Jun. 1996, Martín Mosquero & Ocaña (SEV 153515). HUELVA. Villablanca; 27 Jun. 1996, Juan & Martín Mosquero (SEV 153532). | ||
| T. dunense Sennen | P | CÁDIZ. Chiclana, 24 Jun. 1997, Martín Mosquero (SEV 153794). Faro de Trafalgar, 16 Jul. 1997, Martín Mosquero (SEV 153954). | ||
| T. lusitanicum Schreb. | P | CÁDIZ. Chiclana; 17 Jul. 1996, Juan & Martín Mosquero (SEV 153624). Chiclana, La Barrosa, 3 May 1997, Martín Mosquero (SEV 153805). Between Chiclana and Algeciras, 3 May 1997, Martín Mosquero (SEV 153800). Between Coripe and Algodonales, 4 Jun. 1997, Juan & Martín Mosquero (SEV 153863). CÓRDOBA. Rute, Pico de las Cruces, 25 Jun. 1996, Martín Mosquero & Ocaña (SEV 153502). Between Rute and Priego de Córdoba, 5 Aug. 1996, Martín Mosquero (SEV 153666) GIBRALTAR. Peñón de Gibraltar, 18 Jun. 1996, Martín Mosquero & Ocaña (SEV 153440). | ||
| T. reverchonii Willk. | P | CÁDIZ. Between Coripe and Algodonales, 20 May 1997, Martín Mosquero (SEV 153832). HUELVA. Peña de Arias Montano, 17 Jun. 1996, Juan (SEV 153473). Between Aracena and Valdezufre, 8 Jun. 1997, Martín Mosquero (SEV 153875). | ||
| T. similatum Pau ex T. Navarro & Rosúa | P | CÁDIZ. Sierra de Grazalema, Pico San Cristobal, 26 Jul. 1996, Martín Mosquero & Ocaña (SEV 153613). Between Puerto del Acebuche and Zahara de la Sierra, 14 Aug. 1996, Martín Mosquero & Ocaña (SEV 153677). Between Coripe and Algodonales, 3 Jul. 1997, Martín Mosquero & Ocaña (SEV 153923). Sierra de Grazalema, Puerto Acebuche, 5 Aug. 1997, Martín Mosquero (SEV 153972). | ||
| T. turdetanum (Devesa & Valdés Berm.) Peris, Figuerola & Stübing. | P | CÓRDOBA. Between Rute and Priego de Córdoba, 5 Aug. 1996, Martín Mosquero (SEV 153665). Between Rute and Priego de Córdoba, Pico Bermejo, 30 Jun.1997, Martín Mosquero (SEV 153913). | ||
| Section Polium subsect. Simplicipilosa | ||||
| T. haenseleri Boiss. | P | CÓRDOBA. Embalse de la Breña, 29 Jul. 1997, Martín Mosquero (SEV 153966). HUELVA. Between Linares de la Sierra and Aracena, 11 Jul. 1996, Martín Mosquero & Ocaña (SEV 153600). Alájar, 23.IV.1997, Martín Mosquero & Pérez Porras (SEV 153782). Between San Bartolomé de la Torre & Alonso, 4 Jul. 1997, Gutiérrez & Martín Mosquero (SEV153927). SEVILLA. La Puebla del Río, 9 Jul. 1996, Martín Mosquero (SEV 153576). Between San Nicolás del Puerto and Constantina, Cerro del Hierro, 20 Jul. 1997, Martín Mosquero (SEV 153957). | ||
| Section Polium subsect. Rotundifolia | ||||
| T. rotundifolium Schreb. | P | CÓRDOBA. Pico de las Cruces, 25 Jun. 1996, Martín Mosquero & Ocaña (SEV 153463). Between Rute and Priego de Córdoba, Pico Bermejo, 30.VI.1997, Martín Mosquero (SEV 153912). | ||
The aims of this study were to evaluate the nutritional quality of nutlet proteins according to the necessary minimum values established by the Food and Agriculture Organization of the United Nations (FAO, 1985, 1991), and to use the amino acid composition as a chemical feature to clarify the taxonomic complexity of the group.
MATERIALS AND METHODS
Plant material
Most mature nutlets of Teucrium were collected from wild populations in Spain. Only a few samples were obtained from herbarium specimens. Voucher specimens of the populations studied are deposited in the Herbarium of the Department of Plant Biology and Ecology of the University of Seville (see Table 1 for details of localities and voucher information).
Amino acid analysis
Nutlet samples (10 mg) were hydrolysed with 4 ml of 6 n HCl. The solutions were sealed in tubes under nitrogen and incubated in an oven at 110 °C for 24 h. Amino acids were determined after derivatization with diethyl ethoxymethylenemalonate by high-performance liquid chromatography, according to the method of Alaíz et al. (1992).
Quantification of proteins
Protein percentage was estimated from amino acid data (Hidalgo et al., 2001).
Statistical analysis
Data were analysed with one-way ANOVA and, where differences were significant, separations of means were performed using Tukey's test. Prior to statistical analysis, variables were checked for normality and transformed as necessary. Cluster analysis of Teucrium taxa was done with the NTSYS-pc program, employing the Bray Curtis index of dissimilarity (Bray and Curtis, 1957). The dissimilarity index was transformed to the index of similarity (1 − dissimilarity index) × 100.
RESULTS AND DISCUSSION
Protein contents in Teucrium nutlets were variable, ranging from 6·4 % in T. dunense to 43·8 % in T. algarbiense (Table 2). In general, higher protein content was observed in herbs (annual or perennial herbs) than in shrubs. For example, in sect. Teucrium, herbs such as T. aristatum and T. campanulatum with 25·7 % and 30·9 %, respectively, showed a higher protein content than shrubs like T. fruticans (17·8 %) and T. pseudochamaepitys (14·0 %). Moreover, taxa in sect. Spinularia, which usually are annual herbs, generally had a protein content >20 %. The lowest protein content was observed in sect. Scorodonia. In 13 taxa the protein content, averaging 26 %, was similar to the percentage observed in many legumes (Reddy et al., 1984), while in the remaining taxa it was lower, being more similar to that observed in cereals (Stateus Livsmedelsverk, 1988).
Table 2.
Percentage of essential amino acids per 100 g protein (mean ± s.e.) in nutlets of 21 taxa of Teucrium compared to amino acid content meeting FAO recommendations. Different small letters indicate significant differences between values in the same column (Tukey's test). Columns without superscript letters indicate the absence of significant differences among species. Ala = Alanine, Asp = Aspartic acid, Cys = Cysteine, Glu = Glutamic acid, Gly = Glycine, Ser = Serine, Tyr = Tyrosine
| Taxa |
n |
Protein* |
Ala* |
Asp* |
Cys |
Glu |
Gly* |
Ser* |
Tyr** |
|---|---|---|---|---|---|---|---|---|---|
| T. algarbiense | 4 | 43·8 ± 23·6b | 5·6 ± 0·7ab | 17·6 ± 6·8ab | 0·9 ± 0·4 | 22·0 ± 4·1 | 6·9 ± 0·8b | 5·7 ± 0·5ab | 2·3 ± 0·5bc |
| T. aristatum | 1 | 25·7ab | 7·1ab | 16·0ab | 0·8 | 18·1 | 6·2ab | 6·1ab | 2·1abc |
| T. botrys | 3 | 25·3 ± 15·4ab | 6·2 ± 0·9ab | 14·4 ± 2·8b | 0·8 ± 0·1 | 22·3 ± 2·6 | 6·8 ± 0·6ab | 5·5 ± 0·6ab | 1·8 ± 0·1ab |
| T. campanulatum | 1 | 30·9ab | 5·8ab | 15·9ab | 0·8 | 18·9 | 6·9ab | 6·2ab | 1·6abc |
| T. capitatum | 6 | 17·9 ± 10·9ab | 5·9 ± 0·5ab | 19·3 ± 4·6ab | 1·2 ± 0·5 | 20·9 ± 3·9 | 6·6 ± 1·0ab | 5·1 ± 0·6ab | 1·8 ± 0·4ab |
| T. chamaedrys | 3 | 21·1 ± 19·4ab | 5·3 ± 0·3ab | 18·3 ± 6·2ab | 1·0 ± 0·3 | 21·3 ± 3·0 | 7·9 ± 0·9b | 5·2 ± 0·9ab | 1·9 ± 0·3ab |
| T. dunense | 2 | 6·4 ± 0·4ab | 5·7 ± 0·2ab | 18·4 ± 0·6ab | 1·2 ± 0·2 | 21·6 ± 1·8 | 7·5 ± 0·1b | 4·2 ± 0·1ab | 1·6 ± 0·7ab |
| T. fruticans | 5 | 13·8 ± 8·2ab | 8·2 ± 3·6a | 26·4 ± 0·9a | 0·8 ± 0·3 | 18·0 ± 1·1 | 4·9 ± 0·5a | 4·5 ± 1·2a | 1·2 ± 0·2a |
| T. haenseleri | 6 | 29·3 ± 25·0ab | 5·6 ± 0·5b | 15·9 ± 4·1b | 1·2 ± 0·4 | 22·3 ± 2·4 | 6·9 ± 0·3b | 5·2 ± 0·7ab | 2·3 ± 0·6bc |
| T. lusitanicum | 7 | 9·1 ± 1·6a | 5·0 ± 0·2b | 16·4 ± 3·3b | 0·9 ± 0·4 | 21·4 ± 1·9 | 6·9 ± 0·5b | 4·5 ± 0·4ab | 1·9 ± 0·5ab |
| T. pseudochamaepitys | 5 | 14·03 ± 15·1ab | 5·9 ± 0·5ab | 18·8 ± 0·3ab | 0·9 ± 0·3 | 18·1 ± 2·5 | 6·4 ± 1·1ab | 4·4 ± 1·3a | 1·4 ± 0·4ab |
| T. resupinatum | 3 | 32·2 ± 30·8ab | 5·5 ± 0·3ab | 12·1 ± 1·9b | 1·8 ± 0·3 | 21·3 ± 1·3 | 6·9 ± 0·3ab | 5·8 ± 0·4ab | 3·4 ± 0bc |
| T. reverchonii | 3 | 21·8 ± 15·6ab | 6·0 ± 1·0ab | 21·1 ± 2·4ab | 1·3 ± 0·3 | 21·3 ± 1·3 | 6·8 ± 0·8ab | 4·9 ± 1·2ab | 1·7 ± 0·3ab |
| T. rotundifolium | 2 | 9·7 ± 1·4ab | 5·3 ± 0·4ab | 15·8 ± 1·9ab | 1·5 ± 0·1 | 23·3 ± 1·3 | 6·8 ± 0·3ab | 4·7 ± 0·1ab | 2·3 ± 0·3abc |
| T. scordium subsp. scordioides | 4 | 17·8 ± 19·4ab | 6·2 ± 0·6ab | 14·4 ± 4·4b | 1·4 ± 0·3 | 20·2 ± 2·1 | 7·2 ± 0·5b | 6·1 ± 0·5b | 2·6 ± 0·2abc |
| T. scorodonia. subsp. baeticum | 3 | 6·7 ± 2·9ab | 5·6 ± 0·4ab | 18·4 ± 2·8ab | 1·2 ± 0·2 | 20·7 ± 0·9 | 6·6 ± 0·7ab | 4·3 ± 0·4ab | 1·9 ± 0·5ab |
| T. scorodonia subsp. scorodonia | 3 | 7·2 ± 1·1ab | 5·6 ± 0·5ab | 19·0 ± 4·7ab | 1·1 ± 0·3 | 20·7 ± 2·8 | 6·3 ± 0·6ab | 4·2 ± 0a | 1·8 ± 0·4ab |
| T. similatum | 4 | 20·8 ± 13·9ab | 5·2 ± 0·2ab | 15·4 ± 2·9ab | 1·5 ± 0·4 | 23·4 ± 1·6 | 7·9 ± 0·3b | 5·7 ± 0·9ab | 2·0 ± 0·4ab |
| T. spinosum | 3 | 32·3 ± 5·9ab | 5·5 ± 0·2ab | 11·4 ± 0·3b | 1·6 ± 0·5 | 20·8 ± 0·1 | 6·8 ± 0·4ab | 5·8 ± 0ab | 3·9 ± 0·2c |
| T. turdetanum | 2 | 8·3 ± 0·3ab | 5·4 ± 0·5ab | 19·3 ± 4·3ab | 1·0 ± 0·5 | 20·5 ± 1·6 | 6·6 ± 0·9ab | 4·5 ± 0·7ab | 1·7 ± 0·1ab |
| T. webbianum | 3 | 22·6 ± 8·9ab | 6·1 ± 1·0ab | 21·0 ± 5·2ab | 0·9 ± 0·2 | 20·7 ± 2·9 | 6·2 ± 0·7ab | 5·5 ± 0·3ab | 1·5 ± 0·5ab |
n = number of populations studied.
P < 0·05.
P < 0·01.
The essential amino acid composition was similar in the 21 taxa studied (Table 3). The most abundant essential amino acids in decreasing order were arginine, leucine, valine, threonine, phenylalanine and isoleucine, whereas the least abundant ones were lysine, histidine, methionine and especially tryptophan. Among the essential amino acids, only isoleucine and valine showed significant differences between taxa. Teucrium similatum had the lowest value of isoleucine (2·6 %), while T. campanulatum showed the highest content of valine (6·5 %).
Table 3.
Percentage of essential amino acids/100 g protein (mean ± s.e.) in nutlets of 21 taxa of Teucrium compared to amino acid content meeting FAO recommendations. Different small letters indicate significant differences between values in the same column (Tukey's test, P < 0·05). Columns without superscript letters indicate the absence of significant differences among species. Arg = Arginine, His = Histidine, Iso = Isoleucine; Leu = Leucine, Lys = Lysine, Met = Methionine, Phe = Phenylalanine, Thr = Threonine, Try = Tryptophan, Val = Valine
| n |
Arg |
His |
Iso |
Leu |
Lys |
Met |
Phe |
Thr |
Try |
Val |
|
|---|---|---|---|---|---|---|---|---|---|---|---|
| T. algarbiense | 4 | 10·4 ± 3·2 | 1·5 ± 0·4 | 3·3 ± 0·5abc | 6·6 ± 2·0 | 2·9 ± 0·8 | 0·4 ± 0·3 | 4·8 ± 0·5 | 4·3 ± 0·2 | 0 ± 0 | 4·7 ± 0·9abc |
| T. aristatum | 1 | 5·3 | 1·2 | 4·4abc | 9·9 | 3·5 | 1·8 | 5·3 | 6 | 0 | 6·2abc |
| T. botrys | 3 | 9·3 ± 3·7 | 1·1 ± 0·3 | 3·4 ± 0·5abc | 8·6 ± 0·9 | 3·5 ± 1·7 | 0·2 ± 0 | 4·9 ± 0·3 | 4·4 ± 1·0 | 1·9 ± 1·9 | 5·0 ± 0·7bc |
| T. campanulatum | 1 | 7·6 | 1·6 | 3·8abc | 8·5 | 2·1 | 2·2 | 5·9 | 5·6 | 0 | 6·5c |
| T. capitatum | 6 | 10·8 ± 2·3 | 0·9 ± 0·1 | 2·9 ± 0·5ab | 6·9 ± 1·8 | 2·6 ± 0·8 | 0·7 ± 0·4 | 4·3 ± 0·4 | 4·3 ± 0·2 | 1·9 ± 4·5 | 4·1 ± 0·7ab |
| T. chamaedrys | 3 | 9·4 ± 4·1 | 0·9 ± 0·9 | 2·8 ± 0·1abc | 7·3 ± 0·3 | 1·9 ± 0·2 | 1·8 ± 1·8 | 4·0 ± 1·0 | 4·1 ± 0·7 | 1·7 ± 3·0 | 5·0 ± 1·0abc |
| T. dunense | 2 | 11·5 ± 0·3 | 0·4 ± 0·1 | 3·4 ± 0·1abc | 8·6 ± 0·1 | 2·2 ± 0·7 | 0·1 ± 0·1 | 4·8 ± 0·2 | 4·3 ± 0·2 | 0 ± 0 | 4·7 ± 0·2abc |
| T. fruticans | 5 | 8·5 ± 2·3 | 0·9 ± 1·1 | 2·9 ± 0·3abc | 7·3 ± 0·8 | 3·1 ± 1·2 | 1·2 ± 0·7 | 3·6 ± 0·4 | 4·2 ± 0·4 | 0 ± 0 | 4·3 ± 0·4ab |
| T. haenseleri | 6 | 10·6 ± 1·6 | 1·2 ± 0·7 | 3·3 ± 0·3abc | 8·1 ± 0·4 | 2·6 ± 0·5 | 1·1 ± 0·6 | 4·9 ± 0·3 | 4·3 ± 0·6 | 0 ± 0 | 4·5 ± 0·4ab |
| T. lusitanicum | 7 | 11·3 ± 1·6 | 0·9 ± 0·4 | 3·0 ± 0·2abc | 7·5 ± 1·2 | 2·0 ± 0·3 | 0·5 ± 0·4 | 4·4 ± 0·4 | 4·0 ± 0·5 | 3·9 ± 2·3 | 4·3 ± 0·2ab |
| T. pseudochamaepitys | 5 | 8·9 ± 3·4 | 0·7 ± 1·0 | 3·6 ± 0c | 8·5 ± 0·8 | 3 ± 1·3 | 0·1 ± 0·1 | 4·4 ± 1·1 | 4·9 ± 0·6 | 4·9 ± 6·5 | 5·2 ± 0·4bc |
| T. resupinatum | 3 | 12·4 ± 0·4 | 1·8 ± 0·4 | 3·3 ± 0·3abc | 7·7 ± 0·4 | 2·9 ± 1·1 | 1·2 ± 0·2 | 5·0 ± 0·4 | 4·2 ± 0·1 | 0 ± 0 | 4·7 ± 0·5ab |
| T. reverchonii | 3 | 9·0 ± 1·2 | 0·7 ± 0·6 | 2·9 ± 0·1abc | 7·7 ± 0·7 | 2·7 ± 1·7 | 0·7 ± 0·8 | 4·2 ± 0·1 | 4·8 ± 0·5 | 0 ± 0 | 4·1 ± 0·5ab |
| T. rotundifolium | 2 | 11·9 ± 0·3 | 1·0 ± 0·1 | 3·2 ± 0·1abc | 7·9 ± 0·2 | 2·6 ± 0·5 | 1·0 ± 0·4 | 4·2 ± 0 | 3·6 ± 0·2 | 0 ± 0 | 4·3 ± 0·2ab |
| T. scordium subsp. scordioides | 4 | 10·4 ± 2·1 | 1·1 ± 0·8 | 3·8 ± 0·1c | 8·5 ± 0·3 | 2·1 ± 0·5 | 1·4 ± 0·8 | 4·9 ± 0·7 | 4·8 ± 0·6 | 0 ± 0 | 5·1 ± 0·2abc |
| T. scorodonia. subsp. baeticum | 3 | 12·3 ± 1·3 | 0·8 ± 0·8 | 3·9 ± 0·4bc | 8·6 ± 0·6 | 1·5 ± 0·7 | 0·4 ± 0·8 | 5·3 ± 1·1 | 4·1 ± 0·3 | 0 ± 0 | 4·9 ± 0·2abc |
| T. scorodonia subsp. scorodonia | 3 | 11·9 ± 1·6 | 0·7 ± 0·5 | 3·5 ± 0·1bc | 8·4 ± 0·2 | 2·3 ± 1·1 | 0·5 ± 0·5 | 4·6 ± 0·4 | 4·2 ± 0·1 | 0 ± 0 | 5·0 ± 0·4bc |
| T. similatum | 4 | 11·6 ± 1·3 | 1·3 ± 0·3 | 2·6 ± 0·4a | 7·6 ± 0·4 | 2·2 ± 0·4 | 0·6 ± 0·4 | 4·7 ± 0·2 | 3·7 ± 0·1 | 1·2 ± 2·3 | 3·6 ± 0·4a |
| T. spinosum | 3 | 13·1 ± 0·3 | 2·1 ± 0 | 3·3 ± 0abc | 7·5 ± 0·2 | 2·8 ± 0·2 | 1·3 ± 0·3 | 4·8 ± 0·1 | 3·8 ± 0·2 | 0·9 ± 0·8 | 4·8 ± 0·1abc |
| T. turdetanum | 2 | 12·4 ± 0·9 | 0·4 ± 0·4 | 3·0 ± 0abc | 7·4 ± 0·1 | 2·2 ± 0·8 | 0·7 ± 0·5 | 3·9 ± 0·1 | 3·9 ± 0·1 | 2·8 ± 3·9 | 4·3 ± 0·2ab |
| T. webbianum | 3 | 8·9 ± 3·8 | 1·4 ± 0·1 | 3·0 ± 0·1abc | 7·3 ± 0·3 | 3·7 ± 1·1 | 1·1 ± 0·5 | 3·8 ± 0·6 | 4·6 ± 1·1 | 0 ± 0 | 4·3 ± 0·1ab |
| FAO 1985/1991 | 1·9 | 2·8 | 6·6 | 5·8 | 2·5* | 6·3** | 3·4 | 1·1 | 3·5 |
n = number of populations studied.
* = Met + Cys.
** = Phe + Tyr.
Levels of non-essential amino acids showed more differences among taxa (Table 2). Significant differences among several taxa were observed in five of the seven non-essential amino acids. Only glutamic acid, with values close to 20 %, and cysteine, the least abundant of the non-essential amino acids, showed similar levels in all the taxa studied.
According to the FAO (1985, 1991), no taxon of Teucrium studied was deficient in leucine, threonine or valine, although all showed a deficit in lysine (like cereals; Young and Pellett, 1985; Galili and Larkins, 1999). However, differences were observed for several other amino acids. Thus, only in T. similatum did isoleucine content meet FAO (1985, 1991) recommendations, whereas T. spinosum was the only taxon with a histidine content that is satisfactory according to FAO (1985) recommendations. Content of sulphur amino acids (cysteine and methionine) was only similar to or higher than the standard set by the FAO (1985, 1991) in seven taxa (T. campanulatum, T. aristatum, T. scordium, T. resupinatum, T. chamaedrys and T. rotundifolium). Content of aromatic amino acids (phenylalanine and tyrosine) was generally more satisfactory, only being limiting in seven taxa (T. fruticans, T. pseudochamaepitys, T. chamaedrys, T. webbianum, T. turdetanum, T. capitatum and T. reverchonii). Tryptophan, often limiting in plant proteins, was found in the amounts recommended by FAO (1991) in seven taxa (T. pseudochamaepitys, T. botrys, T. chamaedrys, T. turdetanum, T. similatum, T. lusitanicum and T. capitatum).
In general, proteins from Teucrium nutlets, like most plant proteins, show an unbalanced amino acids composition (Young and Pellett, 1985; Baudoin and Maquet, 1999; Eknayake et al., 1999; Galili and Larkins, 1999), due to the fact that several amino acid do not reach levels recommended by FAO (1985, 1991). Among the studied taxa, T. spinosum showed the most balanced amino acid composition, being limiting only in lysine. Other taxa of interest from a nutritional point of view may be T. campanulatum, T. aristatum, T. scordium subsp. scordioides, T. resupinatum and T. rotundifolium which were deficient only in lysine and histidine. It seems that annual species show a better amino acid composition, since two of the four annual taxa studied (T. aristatum, T. botrys, T. resupinatum and T. spinosum) are among the species with the most balanced amino acid compositions.
A similarity analysis of the 21 Teucrium taxa studied based on the amino acid composition has been made. The software used (NTSYS) gives only one tree out of those possible (Fig. 1).
Fig. 1.
Clustering based on the amino acids content of 21 taxa of Teucrium according to Bray Curtis similarity index (1 − dissimilarity index × 100). C, sect. Chamaedrys; P P sect. Polium subsect. Polium; P R, sect. Polium subsect. Rotundifolia; P S, sect. Polium subsect. Simplicipilosa; Sc, sect. Scorodonia; Sm, sect. Scordium; Sp, sect. Spinularia; T, sect. Teucrium.
The taxa belonging to sect. Teucrium fell in three groups (A, D, E; Fig. 1) using the amino acids profile, despite being morphologically fairly well distinguished by their bluish-white flowers and the absence of glands in the corolla (Navarro, 1995; Navarro and El Oualidi, 2000a). However, these taxa have different habits: T. fruticans (group A) is a shrub up to 250 cm with entire leaves, and is the most different species; T. pseudochamaepitys (group E) is a dwarf shrub up to 50 cm with pinnatisect leaves; and T. campanulatum and T. aristatum (group D) are herbs with pinnatipartite or pinnatifid leaves. Teucrium aristatum has previously been included in T. campanulatum (Tutin and Wood, 1972). Among the remaining taxa (group F), annual species with resupinate corollas from sect. Scordium sensu Willkomm and Lange (1870) (T. resupinatum and T. spinosum) are clearly separated (group H), although lately Navarro and El Oualidi (2000b) included both species in sect. Spinularia Boiss. The remaining taxa of sect. Scordium sensu Willkomm (T. scordium subsp. scordioides and T. botrys), herbs with non-resupinate corollas, are grouped together in group J, with some taxa of sect. Polium (T. similatum, T. algarbiense, T. rotundifolium and T. haenseleri). Teucrium rotundifolium and T. haenseleri (subsections Rotundifolia and Simplicipilosa, respectively) were previously shown by Navarro and Rosúa (1988) to be morphologically closer to each other than to the other two taxa of this group (T. algarbiense and T. similatum), which belong to subsect. Polium. Group I is more heterogeneous, being formed by taxa belonging to three different sections (Scorodonia, Chamaedrys and Polium). The relationship between sections Chamaedrys and Polium has been reported by Kästner (1989), who included sect. Polium in sect. Chamaedrys.
Moreover, the amino acid composition of Teucrium nutlets is congruent in many cases with the karyological complexity of the group. For example, sect. Spinularia is divided in the tree (Fig. 1) into two groups with the basic number x = 7 (T. resupinatum and T. spinosum) (Pastor, 1992) and x = 8 (T. botrys together with T. scordium subsp. scordioides from sect. Scordium) (van Loon and Kieft, 1980; Bayón, 1989, 1990). Although in this work, according to Navarro and El Oualidi (2000b), T. botrys is considered to be included in sect. Spinularia, some authors have previously included this species in sect. Scordium (Ekim, 1982; Devesa, 1987; Navarro, 1995).
Sect. Polium, with the basic number x = 13 (Pastor, 1992; Navarro and El Oualidi, 2000b), is fragmented into four groups (see Fig. 1). The simplest, from a karyological point of view, includes T. similatum, T. algarbiense, T. rotundifolium and T. haenseleri, which are diploid or have higher ploidy but, usually, with low variation in chromosome numbers (Valdés-Bermejo and Sánchez-Crespo, 1978; Puech, 1978, 1984). Another group under sect. Polium is made up by T. turdetanum, T. capitatum and T. lusitanicum which are characterized by variable ploidy (diploid to hexaploid; Puech, 1972, 1974, 1978; Valdés-Bermejo and Sánchez-Crespo, 1978; Rosúa and Navarro, 1986). Teucrium chamaedrys, also has different ploidy levels and falls with species in this group, despite belonging to sect. Chamaedrys. With respect to the two last species belonging to sect. Polium (T. reverchonii and T. dunense), no pattern has been observed from a karyological point of view, especially in T. dunense which according to El Oualidi et al. (1996, 1999), is a complex taxon with the highest ploidy level of sect. Polium (2n = 7x = 91; Rosúa and Navarro, 1986).
Lastly, it has been suggested that environmental conditions may influence the amino acid profile of seed proteins (Baudoin and Maquet, 1999; Rhodes et al., 1999), but this is not seen here. Thus, even taxa with markedly different habitats like T. dunense (sand dunes) or T. scorodonia s.l. (woods) showed a similar composition.
In conclusion, the amino acid composition of nutlet proteins may provide useful information which may help clarify the taxonomic relationships of complex groups of plants like those belonging to Lamiaceae. Besides, from a nutritional point of view, the amino acid composition of the Teucrium taxa studied may increase their value, in addition to the current interest in phytotherapy and flavortherapy.
Acknowledgments
We thank Dr T. Navarro for revising the identification of the plant material and M. Dolores García for technical assistance. This work was supported by grant AGL2001–0526.
LITERATURE CITED
- Alaiz M, Navarro JL, Girón J, Vioque E. 1992. Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. Journal of Chromatography 591: 181–186. [DOI] [PubMed] [Google Scholar]
- Baudoin JP, Maquet A. 1999. Improvement of protein and amino acid contents in seeds of food legumes. A case study in Phaseolus Biotechnology, Agronomy, Society and Environment 3: 220–224. [Google Scholar]
- Bayon E. 1989. Números cromosomáticos de plantas occidentales, 508–520. Anales del Jardín Botánico de Madrid 45: 495–500. [Google Scholar]
- Bayon E. 1990. Números cromosomáticos de plantas occidentales, 574–581. Anales del Jardín Botánico de Madrid 47: 189–192. [Google Scholar]
- Bini Maleci L, Servettaz O. 1991. Morphology and distribution of trichomes in Italian species of Teucrium sect. Chamaedrys (Labiatae). A taxonomical evaluation. Plant Systematics and Evolution 174: 83–91. [Google Scholar]
- Bray RJ, Curtis JI. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349. [Google Scholar]
- Devesa JA. 1987. Teucrium. In: Valdés B, Talavera S, Fernández-Galiano E, eds. Flora vascular de Andalucía Occidental, Vol. 2. Barcelona: Ketres. [Google Scholar]
- Díez MJ, Ojeda F, Colomer M. 1993. Contribución a la palinología del género Teucrium L. en la Península Ibérica e Islas Baleares y su interés taxonómico. Lagascalia 17: 119–134. [Google Scholar]
- Ekim T. 1982.Teucrium L. In: Davis PH, ed. Flora of Turkey and the East Aegean Islands, Vol. 7. Edinburgh: Edinburgh University Press. [Google Scholar]
- Eknayake S, Jansz ER, Nair BM. 1999. Proximate composition, mineral and amino acid content of mature Canavalia gladiata seeds. Food Chemistry 66: 115–119. [Google Scholar]
- El Oualidi J, Puech S. 1993. Quelques marqueurs morphologiques des Teucrium section Polium du Maroc: valeurs diagnostiques à différents niveaux d'intégration. Acta Botánica Malacitana 18: 163–171. [Google Scholar]
- El Oualidi J, Martín A, Puech S. 1996. Le polymorphisme du calice chez Teucrium dunense (Labiatae): son maintien sur les dunes du littoral. Acta Botanica Gallica 143: 55–63. [Google Scholar]
- El Oualidi J, Verneau O, Puech S, Dubuisson JY. 1999. Utility of rDNA its sequences in the systematics of Teucrium section Polium (Lamiaceae). Plant Systematics and Evolution 215: 49–70. [Google Scholar]
- FAO 1985.Energy and protein requeriments. WHO Technical Report Series No. 724. World Health Organization, Geneva. [Google Scholar]
- FAO 1991.Protein quality evaluation. Report of a joint FAO/WHO expert consultation. FAO Food and Nutrition Paper No. 51. Food and Agriculture Organization of the United Nations, Rome. [Google Scholar]
- Galili G, Larkins BA. 1999. Enhancing the content of the essential amino acids lysine and threonine in plants. In: Singh BK, ed., Plant amino acids biochemistry and biotechnology. New York: Marcel Dekker, 487–507. [Google Scholar]
- Güemes J, Mateo G, Crespo MB. 1992. Importancia de los tricomas en la taxonomía del grupo de Teucrium buxifolium Schreber. In: Conesa JA, Recasens, J, eds. Actes del Simposi Internacional de botánica ‘Pius Font i quer 1988’. II. Fanerogami. Lleida: Institut d'Estudis Ilerdences, 155–159. [Google Scholar]
- Harborne JB, Tomas-Baberán F, Williams CA, Gil MJ. 1986. A chemotaxonomic study of flavonoids from European Teucrium species. Phytochemistry 25: 2811–2816. [Google Scholar]
- Hidalgo FJ, Alaiz M, Zamora R. 2001. Determination of peptides and proteins in fats and oils. Analytical Chemistry 73: 698–702. [DOI] [PubMed] [Google Scholar]
- Kästner A. 1989.Übersicht zur systematischen Gliederung der Gattung Teucrium L. Nice: Biocosme Mésogéen, 63–78. [Google Scholar]
- Mabberley DJ. 1978.The plant book. Cambridge: Cambridge University Press. [Google Scholar]
- Manzanares P, Gómez-Campo C, Estrella Tortosa M. 1983. Estudios sobre el indumento de las especies ibéricas y baleáricas del género Teucrium L. (Lamiaceae). Anales del Jardín Botánico de Madrid 40: 93–106. [Google Scholar]
- Navarro T. 1995. Revisión del Género Teucrium L. sección Polium (Miller) Schreber, (Lamiaceae) en la Península Ibérica y Baleares. Acta Botánica Malacitana 20: 173–265. [Google Scholar]
- Navarro T, El Oualidi J. 2000. Trichome morphology in Teucrium L. (Labiatae). A taxonomic review. Anales del Jardín Botánico de Madrid 57: 277–297. [Google Scholar]
- Navarro T, El Oualidi J. 2000. Sinopsis of Teucrium L. (Lamiaceae) in the Mediterranean region and surrounding areas. Flora Mediterranea 10: 349–363. [Google Scholar]
- Navarro T, Rosúa JL. 1988. Nuevas aportaciones al conocimiento de la subsección Simplicipilosa Puech serie Simplicipilosa Navarro & Rosúa nom. nov. (Sect. Polium) género Teucrium L. (Lamiaceae) en la Península Ibérica. Candollea 43: 173–187. [Google Scholar]
- Ojeda F, Díez MJ. 1992. Pollen dimorphism in three Teucrium species (Lamiaceae). Plant Systematics and Evolution 183: 43–49. [Google Scholar]
- Pastor J. (ed.) 1992.Atlas cromosómico de la flora vascular de Andalucía occidental. Sevilla: Universidad de Sevilla. [Google Scholar]
- Puech S. 1972. IOPB Chromosome number reports, XXXVII. Taxon 21: 500. [Google Scholar]
- Puech S. 1974. IOPB Chromosome number reports, XLVI. Taxon 23: 810. [Google Scholar]
- Puech S. 1978. Les Teucrium de la section Polium au Portugal. Bulletim da Sociedade Broteriana 52: 37–50. [Google Scholar]
- Puech S. 1984. Les Teucrium (Labiées) de la Sect. Polium du bassin Méditerranéen occidental (France et Péninsule Ibérique). Naturalia Monspeliensia, Série Botanique. 1–71. [Google Scholar]
- Pettigrew C, Watson L. 1975. Taxonomic patterns in amino-acids of Acacia seed globulins. Phytochemistry 14: 2623–2625. [Google Scholar]
- Reddy NR, Pierson MD, Sathe SK, Salunkhe DK. 1984. Chemical, nutritional and physiological aspects of dry bean carbohydrates—a review. Food Chemistry 13: 25–68. [Google Scholar]
- Rhodes D, Verslves PE, Sharp RE. 1999. Role of amino acids in abiotic stress resistance. In: Singh BK, ed., Plant amino acids biochemistry and biotechnology. New York: Marcel Dekker, 319–356. [Google Scholar]
- Richardson PM. 1992. The chemistry of the Labiatae: an introduction and overview. In: Harley RM, Reynolds T, eds. Advances in Labiatae Science. Kew: Royal Botanic Gardens, 291–297. [Google Scholar]
- Rosúa JL, Navarro T. 1986. Números cromosómicos para la flora española, 456–463. Lagascalia 14: 282–286. [Google Scholar]
- Schreber CD. 1773.Plantarum verticillatarum unilabiarum genera et species. Lipsiae, 41–45. [Google Scholar]
- Statens Livsmedelsverk 1988.Livsmedelatabell, energi och näringsämnen. The Swedish Food Administration, Uppsala. [Google Scholar]
- Tutin TG, Wood D. 1972.Teucrium In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SH, Webb DA, eds. Flora Europaea, Vol. 3. Cambridge: Cambridge University Press, 129–135. [Google Scholar]
- Valdés-Bermejo E, Sánchez-Crespo A. 1978. Datos cariológicos y taxonómicos sobre el género Teucrium L. (Labiatae) en la Península Ibérica. Acta Botánica Malacitana 4: 27–50. [Google Scholar]
- van Loon JC, Kieft B. 1980. IOPB Chromosome number reports, LXVIII. Taxon 29: 538–542. [Google Scholar]
- Velasco-Negueruela A, Pérez-Alonso MJ. 1990. The volatiles of six Teucrium species from the Iberian Peninsula and the Balearic Islands. Phytochemistry 29: 1165–1169. [Google Scholar]
- Willkomm HM, Lange JM. 1870.Prodromus Florae Hispaniae. Stuttgart: Schweizerbart. [Google Scholar]
- Yeoh HH, Watson L. 1981. Systematic variation in amino acid compositions of grass caryopses Phytochemistry 20: 1041–1051. [Google Scholar]
- Yeoh HH, Wee YC, Watson L. 1984. Systematic variation in leaf amino acid compositions of leguminous plants. Phytochemistry 23: 2227–2229. [Google Scholar]
- Yeoh HH, Wee YC, Watson L. 1986. Taxonomic variation in total leaf protein amino acid compositions of monocotyledonous plants. Biochemical Systematics and Ecology 14: 91–96. [Google Scholar]
- Yeoh HH, Wee YC, Watson, L. 1992. Leaf protein contents and amino acid patterns of dicotyledonous plants. Biochemical Systematics and Ecology 20: 657–663. [Google Scholar]
- Young VR, Pellett PL. 1985. Wheat proteins requirements and availability of amino acids. American Journal of Clinical Nutrition 41 (Suppl.): 1077–1090. [DOI] [PubMed] [Google Scholar]

