Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Mar;79(3):903–911. doi: 10.1172/JCI112900

sn-1,2-Diacylglycerols and phorbol diesters stimulate thromboxane synthesis by de novo synthesis of prostaglandin H synthase in human promyelocytic leukemia cells.

M Goerig, A J Habenicht, R Heitz, W Zeh, H Katus, B Kommerell, R Ziegler, J A Glomset
PMCID: PMC424233  PMID: 3102559

Abstract

We studied the regulation of thromboxane (TX) synthesis in promyelocytic leukemia cells during macrophage differentiation. Cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) showed rates of TXB2 synthesis from exogenous arachidonic acid that exceeded that of control cells by a factor of up to 81. Cells treated with sn-1,2-dioctanoylglycerol (diC8) showed similarly high TXB2 synthesis rates when diC8 was added concomitantly with a subthreshold concentration of TPA or when given in multiple doses. These activities depended on de novo synthesis of prostaglandin H (PGH) synthase because: microsomal PGH synthase activity showed large increases in Vmax values, and mass measurements of PGH synthase revealed the presence of PGH synthase in differentiating cells whereas the enzyme was undetectable in control cells. These results indicate that macrophage differentiation is associated with stimulation of TXB2 synthesis that requires both activation of protein kinase C and de novo synthesis of PGH synthase.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  2. Anthes J. C., Bryant R. W., Musch M. W., Ng K., Siegel M. I. Calcium ionophore and chemotactic peptide stimulation of peptidoleukotriene synthesis in DMSO-differentiated HL60 cells. Inflammation. 1986 Jun;10(2):145–156. doi: 10.1007/BF00915996. [DOI] [PubMed] [Google Scholar]
  3. Bonser R. W., Siegel M. I., McConnell R. T., Cuatrecasas P. Chemotactic peptide stimulated endogenous arachidonic acid metabolism in HL-60 granulocytes. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1269–1275. doi: 10.1016/s0006-291x(81)80148-9. [DOI] [PubMed] [Google Scholar]
  4. Bonser R. W., Siegel M. I., McConnell R. T., Cuatrecasas P. The appearance of phospholipase and cyclo-oxygenase activities in the human promyelocytic leukemia cell line HL60 during dimethyl sulfoxide-induced differentiation. Biochem Biophys Res Commun. 1981 Feb 12;98(3):614–620. doi: 10.1016/0006-291x(81)91158-x. [DOI] [PubMed] [Google Scholar]
  5. Borgeat P., Samuelsson B. Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci U S A. 1979 May;76(5):2148–2152. doi: 10.1073/pnas.76.5.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  7. Chabbott H., Cabot M. C. Phorbol diesters inhibit enzymatic hydrolysis of diacylglycerols in vitro. Proc Natl Acad Sci U S A. 1986 May;83(10):3126–3130. doi: 10.1073/pnas.83.10.3126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collins S. J., Ruscetti F. W., Gallagher R. E., Gallo R. C. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide. J Exp Med. 1979 Apr 1;149(4):969–974. doi: 10.1084/jem.149.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davidson E. M., Doig M. V., Ford-Hutchinson A. W., Smith M. J. Prostaglandin and thromboxane production by rabbit polymorphonuclear leukocytes and rat macrophages. Adv Prostaglandin Thromboxane Res. 1980;8:1661–1663. [PubMed] [Google Scholar]
  10. Dayer J. M., Robinson D. R., Krane S. M. Prostaglandin production by rheumatoid synovial cells: stimulation by a factor from human mononuclear Cells. J Exp Med. 1977 May 1;145(5):1399–1404. doi: 10.1084/jem.145.5.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeWitt D. L., Day J. S., Gauger J. A., Smith W. L. Monoclonal antibodies against PGH synthase: an immunoradiometric assay for quantitating the enzyme. Methods Enzymol. 1982;86:229–240. doi: 10.1016/0076-6879(82)86194-6. [DOI] [PubMed] [Google Scholar]
  12. Ebeling J. G., Vandenbark G. R., Kuhn L. J., Ganong B. R., Bell R. M., Niedel J. E. Diacylglycerols mimic phorbol diester induction of leukemic cell differentiation. Proc Natl Acad Sci U S A. 1985 Feb;82(3):815–819. doi: 10.1073/pnas.82.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evers A. S., Murphree S., Saffitz J. E., Jakschik B. A., Needleman P. Effects of endogenously produced leukotrienes, thromboxane, and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J Clin Invest. 1985 Mar;75(3):992–999. doi: 10.1172/JCI111801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feuerstein N., Cooper H. L. Rapid phosphorylation-dephosphorylation of specific proteins induced by phorbol ester in HL-60 cells. Further characterization of the phosphorylation of 17-kilodalton and 27-kilodalton proteins in myeloid leukemic cells and human monocytes. J Biol Chem. 1984 Mar 10;259(5):2782–2788. [PubMed] [Google Scholar]
  15. Feuerstein N., Cooper H. L. Rapid protein phosphorylation induced by phorbol ester in HL-60 cells. Unique alkali-stable phosphorylation of a 17,000-dalton protein detected by two-dimensional gel electrophoresis. J Biol Chem. 1983 Sep 10;258(17):10786–10793. [PubMed] [Google Scholar]
  16. Fitzgerald D. J., Doran J., Jackson E., FitzGerald G. A. Coronary vascular occlusion mediated via thromboxane A2-prostaglandin endoperoxide receptor activation in vivo. J Clin Invest. 1986 Feb;77(2):496–502. doi: 10.1172/JCI112329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Granström E., Kindahl H. Radioimmunoassay of prostaglandins and thromboxanes. Adv Prostaglandin Thromboxane Res. 1978;5:119–210. [PubMed] [Google Scholar]
  19. Habenicht A. J., Dresel H. A., Goerig M., Weber J. A., Stoehr M., Glomset J. A., Ross R., Schettler G. Low density lipoprotein receptor-dependent prostaglandin synthesis in Swiss 3T3 cells stimulated by platelet-derived growth factor. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1344–1348. doi: 10.1073/pnas.83.5.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Habenicht A. J., Goerig M., Grulich J., Rothe D., Gronwald R., Loth U., Schettler G., Kommerell B., Ross R. Human platelet-derived growth factor stimulates prostaglandin synthesis by activation and by rapid de novo synthesis of cyclooxygenase. J Clin Invest. 1985 Apr;75(4):1381–1387. doi: 10.1172/JCI111839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hammarström S. Leukotrienes. Annu Rev Biochem. 1983;52:355–377. doi: 10.1146/annurev.bi.52.070183.002035. [DOI] [PubMed] [Google Scholar]
  22. Harris P., Ralph P. Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukoc Biol. 1985 Apr;37(4):407–422. doi: 10.1002/jlb.37.4.407. [DOI] [PubMed] [Google Scholar]
  23. Helfman D. M., Barnes K. C., Kinkade J. M., Jr, Vogler W. R., Shoji M., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein phosphorylation system in various types of leukemic cells from human patients and in human leukemic cell lines HL60 and K562, and its inhibition by alkyl-lysophospholipid. Cancer Res. 1983 Jun;43(6):2955–2961. [PubMed] [Google Scholar]
  24. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  25. Honda A., Morita I., Murota S., Mori Y. Appearance of the arachidonic acid metabolic pathway in human promyelocytic leukemia (HL-60) cells during monocytic differentiation: enhancement of thromboxane synthesis by 1 alpha,25-dihydroxyvitamin D-3. Biochim Biophys Acta. 1986 Jul 18;877(3):423–432. doi: 10.1016/0005-2760(86)90208-0. [DOI] [PubMed] [Google Scholar]
  26. Honma Y., Takenaga K., Kasukabe T., Hozumi M. Induction of differentiation of cultured human promyelocytic leukemia cells by retinoids. Biochem Biophys Res Commun. 1980 Jul 31;95(2):507–512. doi: 10.1016/0006-291x(80)90813-x. [DOI] [PubMed] [Google Scholar]
  27. Kikkawa U., Takai Y., Tanaka Y., Miyake R., Nishizuka Y. Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem. 1983 Oct 10;258(19):11442–11445. [PubMed] [Google Scholar]
  28. Korn J. H., Halushka P. V., LeRoy E. C. Mononuclear cell modulation of connective tissue function: suppression of fibroblast growth by stimulation of endogenous prostaglandin production. J Clin Invest. 1980 Feb;65(2):543–554. doi: 10.1172/JCI109698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kurland J. I., Bockman R. S., Broxmeyer H. E., Moore M. A. Limitation of excessive myelopoiesis by the intrinsic modulation of macrophage-derived prostaglandin E. Science. 1978 Feb 3;199(4328):552–555. doi: 10.1126/science.304600. [DOI] [PubMed] [Google Scholar]
  30. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  31. Lefkowith J. B., Needleman P. Arachidonate metabolism in renal injury. Adv Prostaglandin Thromboxane Leukot Res. 1985;13:121–130. [PubMed] [Google Scholar]
  32. Lewis R. A., Austen K. F. The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J Clin Invest. 1984 Apr;73(4):889–897. doi: 10.1172/JCI111312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lundberg U., Serhan C. N., Samuelsson B. Appearance of an arachidonic acid 15-lipoxygenase pathway upon differentiation of the human promyelocytic cell-line HL-60. FEBS Lett. 1985 Jun 3;185(1):14–18. doi: 10.1016/0014-5793(85)80731-6. [DOI] [PubMed] [Google Scholar]
  34. Majerus P. W. Arachidonate metabolism in vascular disorders. J Clin Invest. 1983 Nov;72(5):1521–1525. doi: 10.1172/JCI111110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. May W. S., Lapetina E. G., Cuatrecasas P. Intracellular activation of protein kinase C and regulation of the surface transferrin receptor by diacylglycerol is a spontaneously reversible process that is associated with rapid formation of phosphatidic acid. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1281–1284. doi: 10.1073/pnas.83.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Merrill A. H., Jr, Sereni A. M., Stevens V. L., Hannun Y. A., Bell R. M., Kinkade J. M., Jr Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. J Biol Chem. 1986 Sep 25;261(27):12610–12615. [PubMed] [Google Scholar]
  37. Needleman P., Turk J., Jakschik B. A., Morrison A. R., Lefkowith J. B. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55:69–102. doi: 10.1146/annurev.bi.55.070186.000441. [DOI] [PubMed] [Google Scholar]
  38. Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci U S A. 1983 Jan;80(1):36–40. doi: 10.1073/pnas.80.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  40. Ohuchi K., Levine L. Stimulation of prostaglandin synthesis by tumor-promoting phorbol-12, 13-diesters in canine kidney (MDCK) cells. Cycloheximide inhibits the stimulated prostaglandin synthesis, deacylation of lipids, and morphological changes. J Biol Chem. 1978 Jul 10;253(13):4783–4790. [PubMed] [Google Scholar]
  41. Okegawa T., Jonas P. E., DeSchryver K., Kawasaki A., Needleman P. Metabolic and cellular alterations underlying the exaggerated renal prostaglandin and thromboxane synthesis in ureter obstruction in rabbits. Inflammatory response involving fibroblasts and mononuclear cells. J Clin Invest. 1983 Jan;71(1):81–90. doi: 10.1172/JCI110754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
  43. Roth G. J., Stanford N., Majerus P. W. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3073–3076. doi: 10.1073/pnas.72.8.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rovera G., Santoli D., Damsky C. Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2779–2783. doi: 10.1073/pnas.76.6.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Scott W. A., Pawlowski N. A., Andreach M., Cohn Z. A. Resting macrophages produce distinct metabolites from exogenous arachidonic acid. J Exp Med. 1982 Feb 1;155(2):535–547. doi: 10.1084/jem.155.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Scott W. A., Zrike J. M., Hamill A. L., Kempe J., Cohn Z. A. Regulation of arachidonic acid metabolites in macrophages. J Exp Med. 1980 Aug 1;152(2):324–335. doi: 10.1084/jem.152.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sheng W. Y., Lysz T. A., Wyche A., Needleman P. Kinetic comparison and regulation of the cascade of microsomal enzymes involved in renal arachidonate and endoperoxide metabolism. J Biol Chem. 1983 Feb 25;258(4):2188–2192. [PubMed] [Google Scholar]
  48. Shoji M., Vogler W. R., Kuo J. F. Inhibition of phospholipid/Ca2+-dependent protein kinase and phosphorylation of leukemic cell proteins by CP-46,665-1, a novel antineoplastic lipoidal amine. Biochem Biophys Res Commun. 1985 Mar 15;127(2):590–595. doi: 10.1016/s0006-291x(85)80201-1. [DOI] [PubMed] [Google Scholar]
  49. Smith W. L., Rollins T. E. Characteristics of rabbit anti-PGH synthase antibodies and use in immunocytochemistry. Methods Enzymol. 1982;86:213–222. doi: 10.1016/0076-6879(82)86192-2. [DOI] [PubMed] [Google Scholar]
  50. Tanner A. R., Arthur M. J., Wright R. Macrophage activation, chronic inflammation and gastrointestinal disease. Gut. 1984 Jul;25(7):760–783. doi: 10.1136/gut.25.7.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tripp C. S., Leahy K. M., Needleman P. Thromboxane synthase is preferentially conserved in activated mouse peritoneal macrophages. J Clin Invest. 1985 Aug;76(2):898–901. doi: 10.1172/JCI112051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vandenbark G. R., Kuhn L. J., Niedel J. E. Possible mechanism of phorbol diester-induced maturation of human promyelocytic leukemia cells. J Clin Invest. 1984 Feb;73(2):448–457. doi: 10.1172/JCI111231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Whiteley P. J., Needleman P. Mechanism of enhanced fibroblast arachidonic acid metabolism by mononuclear cell factor. J Clin Invest. 1984 Dec;74(6):2249–2253. doi: 10.1172/JCI111651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wise B. C., Glass D. B., Chou C. H., Raynor R. L., Katoh N., Schatzman R. C., Turner R. S., Kibler R. F., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein kinase from heart. II. Substrate specificity and inhibition by various agents. J Biol Chem. 1982 Jul 25;257(14):8489–8495. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES