Abstract
The purpose of this study was to investigate the biochemistry and the regulation of the brain renin-angiotensin system in the Sprague-Dawley rat. Renin activity and angiotensinogen concentrations (direct and indirect radioimmunoassays) were measured in several brain areas and in neuroendocrine glands. Regional renin activities were measured in separate groups of rats on high and low NaCl diets. Mean tissue renin activities ranged from 2.2 +/- 0.6 to 54.4 +/- 19.7 fmol/mg protein per h (mean of 7 +/- SD), with the highest amounts in pineal, pituitary, and pons-medulla. NaCl depletion increased renin activity in selected regions; based on estimates of residual plasma contamination (despite perfusion of brains with saline), increased renin activity of pineal gland and posterior pituitary was attributed to higher plasma renin. To eliminate contamination by plasma renin, 16-h-nephrectomized rats were also studied. In anephric rats, NaCl depletion increased renin activity by 92% in olfactory bulbs and by 97% in anterior pituitary compared with NaCl-replete state. These elevations could not be accounted for by hyperreninemia. Brain renin activity was low and was unaffected by dietary NaCl in amygdala, hypothalamus, striatum, frontal cortex, and cerebellum. In contrast to renin, highest angiotensinogen concentrations were measured in hypothalamus and cerebellum. Overall, angiotensinogen measurements with the direct and the indirect assays were highly correlated (n = 56, r = 0.96, P less than 0.001). We conclude that (a) NaCl deprivation increases renin in olfactory bulbs and anterior pituitary of the rat, unrelated to contamination by plasma renin; and (b) the existence of angiotensinogen, the precursor of angiotensins, is demonstrated by direct radioimmunoassay throughout the brain and in neuroendocrine glands.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Basso N., Ruiz P., Taquini A. C. Angiotensin--forming enzyme active at the physiological Ph in the brain of normal and nephrectomized rats. Clin Exp Hypertens A. 1982;4(6):963–975. doi: 10.3109/10641968209060765. [DOI] [PubMed] [Google Scholar]
- Bouhnik J., Clauser E., Gardes J., Corvol P., Menard J. Direct radioimmunoassay of rat angiotensinogen and its application to rats in various endocrine states. Clin Sci (Lond) 1982 Apr;62(4):355–360. doi: 10.1042/cs0620355. [DOI] [PubMed] [Google Scholar]
- Brosnihan K. B., Smeby R. R., Ferrario C. M. Effects of chronic sodium depletion on canine brain renin and cathepsin D activities. Hypertension. 1982 Sep-Oct;4(5):604–608. doi: 10.1161/01.hyp.4.5.604. [DOI] [PubMed] [Google Scholar]
- Campbell D. J., Bouhnik J., Ménard J., Corvol P. Identity of angiotensinogen precursors of rat brain and liver. Nature. 1984 Mar 8;308(5955):206–208. doi: 10.1038/308206a0. [DOI] [PubMed] [Google Scholar]
- Chen F. M., Healy D. P., Hawkins R., Printz M. P. Chronic infusion of angiotensin II into the olfactory bulb elicits an increase in water intake. Brain Res. 1983 Jan 24;259(2):335–339. doi: 10.1016/0006-8993(83)91270-2. [DOI] [PubMed] [Google Scholar]
- Day R. P., Reid I. A. Renin activity in dog brain: enzymological similarity to cathepsin D. Endocrinology. 1976 Jul;99(1):93–100. doi: 10.1210/endo-99-1-93. [DOI] [PubMed] [Google Scholar]
- Fischer-Ferraro C., Nahmod V. E., Goldstein D. J., Finkielman S. Angiotensin and renin in rat and dog brain. J Exp Med. 1971 Feb 1;133(2):353–361. doi: 10.1084/jem.133.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuxe K., Ganten D., Hökfelt T., Locatelli V., Poulsen K., Stock G., Rix E., Taugner R. Renin-like immunocytochemical activity in the rat and mouse brain. Neurosci Lett. 1980 Jul;18(3):245–250. doi: 10.1016/0304-3940(80)90292-x. [DOI] [PubMed] [Google Scholar]
- Ganong W. F. The brain renin-angiotensin system. Annu Rev Physiol. 1984;46:17–31. doi: 10.1146/annurev.ph.46.030184.000313. [DOI] [PubMed] [Google Scholar]
- Ganten D., Hutchinson J. S., Schelling P., Ganten U., Fischer H. The iso-renin angiotensin systems in extrarenal tissue. Clin Exp Pharmacol Physiol. 1976 Mar-Apr;3(2):103–126. doi: 10.1111/j.1440-1681.1976.tb00596.x. [DOI] [PubMed] [Google Scholar]
- Ganten D., Marquez-Julio A., Granger P., Hayduk K., Karsunky K. P., Boucher R., Genest J. Renin in dog brain. Am J Physiol. 1971 Dec;221(6):1733–1737. doi: 10.1152/ajplegacy.1971.221.6.1733. [DOI] [PubMed] [Google Scholar]
- Gregory T. J., Wallis C. J., Printz M. P. Regional changes in rat brain angiotensinogen following bilateral nephrectomy. Hypertension. 1982 Nov-Dec;4(6):827–838. doi: 10.1161/01.hyp.4.6.827. [DOI] [PubMed] [Google Scholar]
- Harding J. W., Stone L. P., Wright J. W. The distribution of angiotensin II binding sites in rodent brain. Brain Res. 1981 Feb 2;205(2):265–274. doi: 10.1016/0006-8993(81)90338-3. [DOI] [PubMed] [Google Scholar]
- Haulica I., Branisteanu D. D., Rosca V., Stratone A., Berbeleu V., Balan G., Ionescu L. A renin-like activity in pineal gland and hypophysis. Endocrinology. 1975 Feb;96(2):508–510. doi: 10.1210/endo-96-2-508. [DOI] [PubMed] [Google Scholar]
- Hirose S., Yokosawa H., Inagami T. Immunochemical identification of renin in rat brain and distinction from acid proteases. Nature. 1978 Jul 27;274(5669):392–393. doi: 10.1038/274392a0. [DOI] [PubMed] [Google Scholar]
- Hirose S., Yokosawa H., Inagami T., Workman R. J. Renin and prorenin in hog brain: ubiquitous distribution and high concentration in the pituitary and pineal. Brain Res. 1980 Jun 9;191(2):489–499. doi: 10.1016/0006-8993(80)91297-4. [DOI] [PubMed] [Google Scholar]
- Inagami T., Yokosawa H., Hirose S. Definitive evidence for renin in rat brain by affinity chromatographic separation from protease. Clin Sci Mol Med Suppl. 1978 Dec;4:121s–123s. doi: 10.1042/cs055121s. [DOI] [PubMed] [Google Scholar]
- Kowaloff H., Gavras H., Brecher P. Reninlike enzymatic activity in the cerebral microvessels of the rat. Am J Physiol. 1980 Mar;238(3):H384–H388. doi: 10.1152/ajpheart.1980.238.3.H384. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lewicki J. A., Fallon J. H., Printz M. P. Regional distribution of angiotensinogen in rat brain. Brain Res. 1978 Dec 15;158(2):359–371. doi: 10.1016/0006-8993(78)90681-9. [DOI] [PubMed] [Google Scholar]
- Menard J., Catt K. J. Measurement of renin activity, concentration and substrate in rat plasma by radioimmunoassay of angiotensin I. Endocrinology. 1972 Feb;90(2):422–430. doi: 10.1210/endo-90-2-422. [DOI] [PubMed] [Google Scholar]
- Osman M. Y., Smeby R. R., Sen S. Separation of dog brain renin-like activity from acid protease activity. Hypertension. 1979 Jan-Feb;1(1):53–60. doi: 10.1161/01.hyp.1.1.53. [DOI] [PubMed] [Google Scholar]
- REED D. J., WOODBURY D. M. KINETICS OF MOVEMENT OF IODIDE, SUCROSE, INULIN AND RADIO-IODINATED SERUM ALBUMIN IN THE CENTRAL NERVOUS SYSTEM AND CEREBROSPINAL FLUID OF THE RAT. J Physiol. 1963 Dec;169:816–850. doi: 10.1113/jphysiol.1963.sp007298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid I. A. The brain renin-angiotensin system: a critical analysis. Fed Proc. 1979 Aug;38(9):2255–2259. [PubMed] [Google Scholar]
- Schelling P., Meyer D., Loos H. E., Speck G., Phillips M. I., Johnson A. K., Ganten D. A micromethod for the measurement of renin in brain nuclei: its application in spontaneously hypertensive rats. Neuropharmacology. 1982 May;21(5):455–463. doi: 10.1016/0028-3908(82)90031-4. [DOI] [PubMed] [Google Scholar]
- Sernia C., Mowchanuk M. D. Brain angiotensinogen: in vitro synthesis and chromatographic characterization. Brain Res. 1983 Jan 24;259(2):275–283. doi: 10.1016/0006-8993(83)91258-1. [DOI] [PubMed] [Google Scholar]
- Severs W. B., Daniels-Severs A. E. Effects of angiotensin on the central nervous system. Pharmacol Rev. 1973 Sep;25(3):415–449. [PubMed] [Google Scholar]
- Slaven B. Influence of salt and volume on changes in rat brain angiotensin. J Pharm Pharmacol. 1975 Oct;27(10):782–783. doi: 10.1111/j.2042-7158.1975.tb09403.x. [DOI] [PubMed] [Google Scholar]
- Suzuki F., Nakamura Y., Nagata Y., Ohsawa T., Murakami K. A rapid and large-scale isolation of renin from mouse submaxillary gland by pepstatin-aminohexyl-agarose affinity chromatography. J Biochem. 1981 Apr;89(4):1107–1112. [PubMed] [Google Scholar]
- Vollmer R. R. Effects of dietary sodium on sympathetic nervous system control of cardiovascular function. J Auton Pharmacol. 1984 Jun;4(2):133–144. doi: 10.1111/j.1474-8673.1984.tb00090.x. [DOI] [PubMed] [Google Scholar]
