Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Apr;79(4):1125–1132. doi: 10.1172/JCI112928

In vivo regulation of human mononuclear leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase. Studies in normal subjects.

H J Harwood Jr, D M Bridge, P W Stacpoole
PMCID: PMC424293  PMID: 3558818

Abstract

In vivo regulation of microsomal HMG CoA reductase activity was investigated in freshly isolated mononuclear leukocytes from 26 healthy adult males. Reductase activity exhibited a diurnal rhythm and decreased during fasting. Enzyme activity was also modulated in vivo by alterations in dietary and plasma cholesterol, suggesting the existence of an operative cholesterol feedback regulatory system. A single, high cholesterol meal decreased reductase activity within 2 h. In addition, rapid depletion of circulating cholesterol levels by plasmapheresis led to an approximately twofold elevation in enzyme activity within 90 min of treatment. Finally, reductase activity was inhibited by dichloroacetate, a compound known to lower plasma cholesterol in man and inhibit the human leukocyte enzyme in vitro. The regulatory mechanisms controlling HMG CoA reductase activity in the human mononuclear leukocyte in vivo thus are similar to those that modulate the mammalian liver enzyme in vivo. Assessment of mononuclear leukocyte reductase activity may provide insight into the in vivo regulation of human cholesterol metabolism.

Full text

PDF
1125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelin B., Backman L., Einarsson K., Eriksson L., Ewerth S. Hepatic cholesterol metabolism in obesity: activity of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Lipid Res. 1982 Jul;23(5):770–773. [PubMed] [Google Scholar]
  2. Angelin B., Ewerth S., Einarsson K. Ursodeoxycholic acid treatment in cholesterol gallstone disease: effects on hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, biliary lipid composition, and plasma lipid levels. J Lipid Res. 1983 Apr;24(4):461–468. [PubMed] [Google Scholar]
  3. Betteridge D. J., Krone W., Reckless J. P., Galton D. J. Compactin inhibits cholesterol synthesis in lymphocytes and intestinal mucosa from patients with familial hypercholesterolaemia. Lancet. 1978 Dec 23;2(8104-5):1342–1343. doi: 10.1016/s0140-6736(78)91977-3. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bronsgeest-Schoute D. C., Hermus R. J., Dallinga-Thie G. M., Hautvast J. G. Dependence of the effects of dietary cholesterol and experimental conditions on serum lipids in man. II. Effects of dietary cholesterol in a linoleic acid-poor diet. Am J Clin Nutr. 1979 Nov;32(11):2188–2192. doi: 10.1093/ajcn/32.11.2188. [DOI] [PubMed] [Google Scholar]
  6. Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. doi: 10.1126/science.3513311. [DOI] [PubMed] [Google Scholar]
  7. Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
  8. Brown M. S., Goldstein J. L. The LDL receptor and HMG-CoA reductase--two membrane molecules that regulate cholesterol homeostasis. Curr Top Cell Regul. 1985;26:3–15. doi: 10.1016/b978-0-12-152826-3.50008-5. [DOI] [PubMed] [Google Scholar]
  9. Clarke C. F., Fogelman A. M., Edwards P. A. Diurnal rhythm of rat liver mRNAs encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase. Correlation of functional and total mRNA levels with enzyme activity and protein. J Biol Chem. 1984 Aug 25;259(16):10439–10447. [PubMed] [Google Scholar]
  10. Connor W. E., Connor S. L. The key role of nutritional factors in the prevention of coronary heart disease. Prev Med. 1972 Mar;1(1):49–83. doi: 10.1016/0091-7435(72)90077-1. [DOI] [PubMed] [Google Scholar]
  11. Daerr W. H., Gianturco S. H., Patsch J. R., Smith L. C., Gotto A. M., Jr Stimulation and suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in normal human fibroblasts by high density lipoprotein subclasses. Biochim Biophys Acta. 1980 Aug 11;619(2):287–301. doi: 10.1016/0005-2760(80)90077-6. [DOI] [PubMed] [Google Scholar]
  12. Duane W. C., Levitt D. G., Mueller S. M., Behrens J. C. Regulation of bile acid synthesis in man. Presence of a diurnal rhythm. J Clin Invest. 1983 Dec;72(6):1930–1936. doi: 10.1172/JCI111157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Easom R. A., Zammit V. A. Diurnal changes in the fraction of 3-hydroxy-3-methylglutaryl-CoA reductase in the active form in rat liver microsomal fractions. Biochem J. 1984 Jun 15;220(3):739–745. doi: 10.1042/bj2200739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edwards P. A., Lan S. F., Tanaka R. D., Fogelman A. M. Mevalonolactone inhibits the rate of synthesis and enhances the rate of degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat hepatocytes. J Biol Chem. 1983 Jun 25;258(12):7272–7275. [PubMed] [Google Scholar]
  15. Faust J. R., Luskey K. L., Chin D. J., Goldstein J. L., Brown M. S. Regulation of synthesis and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by low density lipoprotein and 25-hydroxycholesterol in UT-1 cells. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5205–5209. doi: 10.1073/pnas.79.17.5205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fogelman A. M., Edmond J., Seager J., Popják G. Abnormal induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase in leukocytes from subjects with heterozygous familial hypercholesterolemia. J Biol Chem. 1975 Mar 25;250(6):2045–2055. [PubMed] [Google Scholar]
  17. Fogelman A. M., Seager J., Edwards P. A., Hokom M., Popják G. Cholesterol biosynthesis in human lymphocytes, monocytes, and granulocytes. Biochem Biophys Res Commun. 1977 May 9;76(1):167–173. doi: 10.1016/0006-291x(77)91682-5. [DOI] [PubMed] [Google Scholar]
  18. Fogelman A. M., Seager J., Hokom M., Edwards P. A. Separation of and cholesterol synthesis by human lymphocytes and monocytes. J Lipid Res. 1979 Mar;20(3):379–388. [PubMed] [Google Scholar]
  19. Gebhard R. L., Stone B. G., Prigge W. F. 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity in the human gastrointestinal tract. J Lipid Res. 1985 Jan;26(1):47–53. [PubMed] [Google Scholar]
  20. Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
  21. Goodman D. S., Noble R. P., Dell R. B. Three-pool model of the long-term turnover of plasma cholesterol in man. J Lipid Res. 1973 Mar;14(2):178–188. [PubMed] [Google Scholar]
  22. Greene Y. J., Harwood H. J., Jr, Stacpoole P. W. Ascorbic acid regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol synthesis in guinea pig liver. Biochim Biophys Acta. 1985 Mar 27;834(1):134–138. doi: 10.1016/0005-2760(85)90186-9. [DOI] [PubMed] [Google Scholar]
  23. Grundy S. M., Ahrens E. H., Jr Measurements of cholesterol turnover, synthesis, and absorption in man, carried out by isotope kinetic and sterol balance methods. J Lipid Res. 1969 Jan;10(1):91–107. [PubMed] [Google Scholar]
  24. Harwood H. J., Jr, Greene Y. J., Stacpoole P. W. Inhibition of human leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by ascorbic acid. An effect mediated by the free radical monodehydroascorbate. J Biol Chem. 1986 Jun 5;261(16):7127–7135. [PubMed] [Google Scholar]
  25. Harwood H. J., Jr, Schneider M., Stacpoole P. W. Measurement of human leukocyte microsomal HMG-CoA reductase activity. J Lipid Res. 1984 Sep;25(9):967–978. [PubMed] [Google Scholar]
  26. Harwood H. J., Jr, Schneider M., Stacpoole P. W. Regulation of human leukocyte microsomal hydroxymethylglutaryl-CoA reductase activity by a phosphorylation and dephosphorylation mechanism. Biochim Biophys Acta. 1984 Nov 13;805(3):245–251. doi: 10.1016/0167-4889(84)90079-x. [DOI] [PubMed] [Google Scholar]
  27. Kennelly P. J., Rodwell V. W. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by reversible phosphorylation-dephosphorylation. J Lipid Res. 1985 Aug;26(8):903–914. [PubMed] [Google Scholar]
  28. Kopito R. R., Weinstock S. B., Freed L. E., Murray D. M., Brunengraber H. Metabolism of plasma mevalonate in rats and humans. J Lipid Res. 1982 May;23(4):577–583. [PubMed] [Google Scholar]
  29. Kummerow F. A. Nutrition imbalance and angiotoxins as dietary risk factors in coronary heart disease. Am J Clin Nutr. 1979 Jan;32(1):58–83. doi: 10.1093/ajcn/32.1.58. [DOI] [PubMed] [Google Scholar]
  30. Liu G. C., Ahrens E. H., Jr, Schreibman P. H., Samuel P., McNamara D. J., Crouse J. R. Measurement of cholesterol synthesis in man by isotope kinetics of squalene. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4612–4616. doi: 10.1073/pnas.72.11.4612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mahley R. W., Innerarity T. L., Brown M. S., Ho Y. K., Goldstein J. L. Cholesteryl ester synthesis in macrophages: stimulation by beta-very low density lipoproteins from cholesterol-fed animals of several species. J Lipid Res. 1980 Nov;21(8):970–980. [PubMed] [Google Scholar]
  32. Marrero P. F., Haro D., Hegardt F. G. Phosphorylation of HMG-CoA reductase induced by mevalonate accelerates its rate of degradation in isolated rat hepatocytes. FEBS Lett. 1986 Mar 3;197(1-2):183–186. doi: 10.1016/0014-5793(86)80323-4. [DOI] [PubMed] [Google Scholar]
  33. Martin G. M., Nestel P. Changes in cholesterol metabolism with dietary cholesterol in children with familial hypercholesterolaemia. Clin Sci (Lond) 1979 Apr;56(4):377–380. doi: 10.1042/cs0560377. [DOI] [PubMed] [Google Scholar]
  34. McGill H. C., Jr Appraisal of cholesterol as a causative factor in atherogenesis. Am J Clin Nutr. 1979 Dec;32(12 Suppl):2632–2636. doi: 10.1093/ajcn/32.12.2632. [DOI] [PubMed] [Google Scholar]
  35. McNamara D. J., Davidson N. O., Fernandez S. In vitro cholesterol synthesis in freshly isolated mononuclear cells of human blood: effect of in vivo administration of clofibrate and/or cholestyramine. J Lipid Res. 1980 Jan;21(1):65–71. [PubMed] [Google Scholar]
  36. Miettinen T. A. Detection of changes in human cholesterol metabolism. Ann Clin Res. 1970 Dec;2(4):300–320. [PubMed] [Google Scholar]
  37. Mistry P., Miller N. E., Laker M., Hazzard W. R., Lewis B. Individual variation in the effects of dietary cholesterol on plasma lipoproteins and cellular cholesterol homeostasis in man. Studies of low density lipoprotein receptor activity and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in blood mononuclear cells. J Clin Invest. 1981 Feb;67(2):493–502. doi: 10.1172/JCI110058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Moore G. W., Swift L. L., Rabinowitz D., Crofford O. B., Oates J. A., Stacpoole P. W. Reduction of serum cholesterol in two patients with homozygous familial hypercholesterolemia by dichloroacetate. Atherosclerosis. 1979 Jul;33(3):285–293. doi: 10.1016/0021-9150(79)90180-1. [DOI] [PubMed] [Google Scholar]
  39. Ness G. C., McCreery M. J., Sample C. E., Smith M., Pendleton L. C. Sulfhydryl/disulfide forms of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem. 1985 Dec 25;260(30):16395–16399. [PubMed] [Google Scholar]
  40. Nestel P. J. Cholesterol metabolism in anorexia nervosa and hypercholesterolemia. J Clin Endocrinol Metab. 1974 Feb;38(2):325–328. doi: 10.1210/jcem-38-2-325. [DOI] [PubMed] [Google Scholar]
  41. Parker R. A., Miller S. J., Gibson D. M. Phosphorylation of microsomal HMG CoA reductase increases susceptibility to proteolytic degradation in vitro. Biochem Biophys Res Commun. 1984 Dec 14;125(2):629–635. doi: 10.1016/0006-291x(84)90585-0. [DOI] [PubMed] [Google Scholar]
  42. Parker T. S., McNamara D. J., Brown C. D., Kolb R., Ahrens E. H., Jr, Alberts A. W., Tobert J., Chen J., De Schepper P. J. Plasma mevalonate as a measure of cholesterol synthesis in man. J Clin Invest. 1984 Sep;74(3):795–804. doi: 10.1172/JCI111495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Parker T. S., McNamara D. J., Brown C., Garrigan O., Kolb R., Batwin H., Ahrens E. H., Jr Mevalonic acid in human plasma: relationship of concentration and circadian rhythm to cholesterol synthesis rates in man. Proc Natl Acad Sci U S A. 1982 May;79(9):3037–3041. doi: 10.1073/pnas.79.9.3037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Peng S. K., Tham P., Taylor C. B., Mikkelson B. Cytotoxicity of oxidation derivatives of cholesterol on cultured aortic smooth muscle cells and their effect on cholesterol biosynthesis. Am J Clin Nutr. 1979 May;32(5):1033–1042. doi: 10.1093/ajcn/32.5.1033. [DOI] [PubMed] [Google Scholar]
  45. Quintão E., Grundy S. M., Ahrens E. H., Jr Effects of dietary cholesterol on the regulation of total body cholesterol in man. J Lipid Res. 1971 Mar;12(2):233–247. [PubMed] [Google Scholar]
  46. Richert L., Castagna M., Beck J. P., Rong S., Luu B., Ourisson G. Growth-rate-related and hydroxysterol-induced changes in membrane fluidity of cultured hepatoma cells: correlation with 3-hydroxy-3-methyl glutaryl CoA reductase activity. Biochem Biophys Res Commun. 1984 Apr 16;120(1):192–198. doi: 10.1016/0006-291x(84)91432-3. [DOI] [PubMed] [Google Scholar]
  47. Rifkind B. M., Segal P. Lipid Research Clinics Program reference values for hyperlipidemia and hypolipidemia. JAMA. 1983 Oct 14;250(14):1869–1872. [PubMed] [Google Scholar]
  48. Rodwell V. W., Nordstrom J. L., Mitschelen J. J. Regulation of HMG-CoA reductase. Adv Lipid Res. 1976;14:1–74. doi: 10.1016/b978-0-12-024914-5.50008-5. [DOI] [PubMed] [Google Scholar]
  49. Roitelman J., Shechter I. Allosteric activation of rat liver microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase by nicotinamide adenine dinucleotides. J Biol Chem. 1984 Nov 25;259(22):14029–14032. [PubMed] [Google Scholar]
  50. Roitelman J., Shechter I. Altered kinetic properties of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase following dietary manipulations. J Biol Chem. 1986 Apr 15;261(11):5061–5066. [PubMed] [Google Scholar]
  51. Roitelman J., Shechter I. Regulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. Evidence for thiol-dependent allosteric modulation of enzyme activity. J Biol Chem. 1984 Jan 25;259(2):870–877. [PubMed] [Google Scholar]
  52. Rudney H., Sexton R. C. Regulation of cholesterol biosynthesis. Annu Rev Nutr. 1986;6:245–272. doi: 10.1146/annurev.nu.06.070186.001333. [DOI] [PubMed] [Google Scholar]
  53. Samuel P., Lieberman S. Improved estimation of body masses and turnover of cholesterol by computerized input--output analysis. J Lipid Res. 1973 Mar;14(2):189–196. [PubMed] [Google Scholar]
  54. Schlierf G., Oster P., Lang D., Raetzer H., Schellenberg B., Heuck C. C. Lipoprotein metabolism in man. Adv Exp Med Biol. 1978;109:29–43. doi: 10.1007/978-1-4684-0967-3_2. [DOI] [PubMed] [Google Scholar]
  55. Schwartz C. C., Berman M., Vlahcevic Z. R., Swell L. Multicompartmental analysis of cholesterol metabolism in man. Quantitative kinetic evaluation of precursor sources and turnover of high density lipoprotein cholesterol esters. J Clin Invest. 1982 Oct;70(4):863–876. doi: 10.1172/JCI110683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shapiro D. J., Rodwell V. W. Fine structure of the cyclic rhythm of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Differential effects of cholesterol feeding and fasting. Biochemistry. 1972 Mar 14;11(6):1042–1045. doi: 10.1021/bi00756a014. [DOI] [PubMed] [Google Scholar]
  57. Shefer S., Hauser S., Lapar V., Mosbach E. H. Diurnal variation of HMG CoA reductase activity in rat intestine. J Lipid Res. 1972 Sep;13(5):571–573. [PubMed] [Google Scholar]
  58. Stacpoole P. W., Harwood H. J., Jr, Varnado C. E. Regulation of rat liver hydroxymethylglutaryl coenzyme A reductase by a new class of noncompetitive inhibitors. Effects of dichloroacetate and related carboxylic acids on enzyme activity. J Clin Invest. 1983 Nov;72(5):1575–1585. doi: 10.1172/JCI111116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Stacpoole P. W., Moore G. W., Kornhauser D. M. Metabolic effects of dichloroacetate in patients with diabetes mellitus and hyperlipoproteinemia. N Engl J Med. 1978 Mar 9;298(10):526–530. doi: 10.1056/NEJM197803092981002. [DOI] [PubMed] [Google Scholar]
  60. Subbiah M. T., Siekert R. G., Jr Dietary restriction and the development of atherosclerosis. Br J Nutr. 1979 Jan;41(1):1–6. doi: 10.1079/bjn19790003. [DOI] [PubMed] [Google Scholar]
  61. Tan M. H., Dickinson M. A., Albers J. J., Havel R. J., Cheung M. C., Vigne J. L. The effect of a high cholesterol and saturated fat diet on serum high-density lipoprotein-cholesterol, apoprotein A-I, and apoprotein E levels in normolipidemic humans. Am J Clin Nutr. 1980 Dec;33(12):2559–2565. doi: 10.1093/ajcn/33.12.2559. [DOI] [PubMed] [Google Scholar]
  62. Taylor C. B., Peng S. K., Werthessen N. T., Tham P., Lee K. T. Spontaneously occurring angiotoxic derivatives of cholesterol. Am J Clin Nutr. 1979 Jan;32(1):40–57. doi: 10.1093/ajcn/32.1.40. [DOI] [PubMed] [Google Scholar]
  63. Young N. L., Rodwell V. W. Regulation of hydroxymethylglutaryl-CoA reductase in rat leukocytes. J Lipid Res. 1977 Sep;18(5):572–581. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES