Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Dec;76(6):2070–2077. doi: 10.1172/JCI112210

Recognition of human insulin in vitro by T cells from subjects treated with animal insulins.

L J Nell, V J Virta, J W Thomas
PMCID: PMC424310  PMID: 2416775

Abstract

Structurally defined proteins and peptides have provided considerable information about the specificity and regulation of immune responses in inbred animals. Many diabetics require therapy with insulin; therefore, we used this defined protein as a model antigen to investigate immune responses in the outbred human population. In this report, we examine human T cell recognition of antigenic determinants on various insulins. A group of 25 subjects was selected from over 200 diabetics because of the magnitude of their in vitro responses. 13 of the 25 had significant T cell responses to human insulin despite treatment with only beef/pork insulin mixtures. This autoimmunity may be attributed to crossreactivity of lymphocytes highly reactive to "foreign" epitopes on therapeutic insulins. Alternatively, identical determinants shared by human and animal insulins may be recognized. By employing additional insulins not used therapeutically and isolated A and B chains, several potential mechanisms for lymphocyte autoreactivity to human insulin were demonstrated. Some epitopes are conformational and require recognition of an intact molecule, whereas other epitopes may arise from antigen processing at the cellular level. Studies using zinc-free insulins suggest that zinc-induced alterations of the molecular surface may result in some shared reactivities between animal and human insulin. Furthermore, T cell reactivity against "foreign" epitopes is more complex than anticipated from differences in amino acid sequence. The response patterns of many subjects indicate that the A-chain loop associates with the N-terminal B chain to form a complex determinant. This determinant is recognized more often than individual amino acids. We conclude that insulin therapy generates polyclonal T cell responses directed at multiple epitopes on the molecule. Many of these epitopes are not identified by amino acid exchanges and their presence on human insulin leads to apparent autoimmunity.

Full text

PDF
2070

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. M., Unanue E. R. Differential requirements for antigen processing by macrophages for lysozyme-specific T cell hybridomas. J Immunol. 1984 Mar;132(3):1077–1079. [PubMed] [Google Scholar]
  2. Altman J. J., Pehuet M., Slama G., Tchobroutsky C. Three cases of allergic reaction to human insulin. Lancet. 1983 Aug 27;2(8348):524–524. doi: 10.1016/s0140-6736(83)90560-3. [DOI] [PubMed] [Google Scholar]
  3. Arquilla E. R., Thiene P., Brugman T., Ruess W., Sugiyama R. Effects of zinc ion on the conformation of antigenic determinants on insulin. Biochem J. 1978 Oct 1;175(1):289–297. doi: 10.1042/bj1750289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berke L., Owen J. A., Jr, Atkinson R. L., Jr Allergies to human insulin. Diabetes Care. 1984 Jul-Aug;7(4):402–403. doi: 10.2337/diacare.7.4.402. [DOI] [PubMed] [Google Scholar]
  5. Blackard W. G. Radioimmunoassay of the A-chain of insulin. Diabetes. 1967 Oct;16(10):681–686. doi: 10.2337/diab.16.10.681. [DOI] [PubMed] [Google Scholar]
  6. Bucy R. P., Kapp J. A. Ir gene control of the immune response to insulins. I. Pork insulin stimulates T cell activity in nonresponder mice. J Immunol. 1981 Feb;126(2):603–607. [PubMed] [Google Scholar]
  7. Chesnut R. W., Colon S. M., Grey H. M. Requirements for the processing of antigens by antigen-presenting B cells. I. Functional comparison of B cell tumors and macrophages. J Immunol. 1982 Dec;129(6):2382–2388. [PubMed] [Google Scholar]
  8. Chothia C., Lesk A. M., Dodson G. G., Hodgkin D. C. Transmission of conformational change in insulin. Nature. 1983 Apr 7;302(5908):500–505. doi: 10.1038/302500a0. [DOI] [PubMed] [Google Scholar]
  9. Fineberg S. E., Galloway J. A., Fineberg N. S., Rathbun M. J., Hufferd S. Immunogenicity of recombinant DNA human insulin. Diabetologia. 1983 Dec;25(6):465–469. doi: 10.1007/BF00284452. [DOI] [PubMed] [Google Scholar]
  10. Grammer L. C., Chen P. Y., Patterson R. Evaluation and management of insulin allergy. J Allergy Clin Immunol. 1983 Feb;71(2):250–254. doi: 10.1016/0091-6749(83)90107-0. [DOI] [PubMed] [Google Scholar]
  11. Hamlin J. L., Arquilla E. R. Monoiodoinsulin. Preparation, purification, and characterization of a biologically active derivative substituted predominantly on tyrosine A14. J Biol Chem. 1974 Jan 10;249(1):21–32. [PubMed] [Google Scholar]
  12. Heding L. G., Marshall M. O., Persson B., Dahlquist G., Thalme B., Lindgren F., Akerblom H. K., Rilva A., Knip M., Ludvigsson J. Immunogenicity of monocomponent human and porcine insulin in newly diagnosed type 1 (insulin-dependent) diabetic children. Diabetologia. 1984 Jul;27 (Suppl):96–98. doi: 10.1007/BF00275658. [DOI] [PubMed] [Google Scholar]
  13. Jensen P. E., Pierce C. W., Kapp J. A. Regulatory mechanisms in immune responses to heterologous insulins. II. Suppressor T cell activation associated with nonresponsiveness in H-2b mice. J Exp Med. 1984 Oct 1;160(4):1012–1026. doi: 10.1084/jem.160.4.1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kovac Z., Schwartz R. H. The molecular basis of the requirement for antigen processing of pigeon cytochrome c prior to T cell activation. J Immunol. 1985 May;134(5):3233–3240. [PubMed] [Google Scholar]
  15. Mann D. L., Mendell N., Kahn C. R., Johnson A. H., Rosenthal A. In vitro lymphocyte proliferation response to therapeutic insulin components. Evidence for genetic control by the human major histocompatibility complex. J Clin Invest. 1983 Sep;72(3):1130–1138. doi: 10.1172/JCI111038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nell L. J., Thomas J. W. The human immune response to insulin. I. Kinetic and cellular aspects of lymphocyte proliferative responses in diabetics. J Immunol. 1983 Aug;131(2):701–705. [PubMed] [Google Scholar]
  17. Nell L. J., Virta V. J., Thomas J. W. Application of a rapid enzyme-linked immunosorbent microassay (ELISA) to study human anti-insulin antibody. Diabetes. 1985 Jan;34(1):60–66. doi: 10.2337/diab.34.1.60. [DOI] [PubMed] [Google Scholar]
  18. Palmer J. P., Asplin C. M., Clemons P., Lyen K., Tatpati O., Raghu P. K., Paquette T. L. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science. 1983 Dec 23;222(4630):1337–1339. doi: 10.1126/science.6362005. [DOI] [PubMed] [Google Scholar]
  19. Rosenthal A. S., Barcinski M. A., Blake J. T. Determinant selection is a macrophage dependent immune response gene function. Nature. 1977 May 12;267(5607):156–158. doi: 10.1038/267156a0. [DOI] [PubMed] [Google Scholar]
  20. Rosenwasser L. J., Barcinski M. A., Schwartz R. H., Rosenthal A. S. Immune response gene control of determinant selection. II. Genetic control of the murine T lymphocyte proliferative response to insulin. J Immunol. 1979 Jul;123(1):471–476. [PubMed] [Google Scholar]
  21. Ross J. M., Murali M. R., DeLara T. C., Cheron R. G. Anaphylaxis and immunologic insulin resistance in a diabetic woman with ketoacidosis. Diabetes Care. 1984 May-Jun;7(3):276–279. doi: 10.2337/diacare.7.3.276. [DOI] [PubMed] [Google Scholar]
  22. Shimonkevitz R., Kappler J., Marrack P., Grey H. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J Exp Med. 1983 Aug 1;158(2):303–316. doi: 10.1084/jem.158.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Streicher H. Z., Berkower I. J., Busch M., Gurd F. R., Berzofsky J. A. Antigen conformation determines processing requirements for T-cell activation. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6831–6835. doi: 10.1073/pnas.81.21.6831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Talmon J., Ranghino G., Yonath A., Cohen I. R. Structural analysis of insulin determinants seen by T cells directed by H-2 genes. Immunogenetics. 1983;18(1):79–89. doi: 10.1007/BF00401358. [DOI] [PubMed] [Google Scholar]
  25. Thomas J. W., Danho W., Bullesbach E., Föhles J., Rosenthal A. S. Immune response gene control of determinant selection. III. Polypeptide fragments of insulin are differentially recognized by T but not by B cells in insulin immune guinea pigs. J Immunol. 1981 Mar;126(3):1095–1100. [PubMed] [Google Scholar]
  26. Touber J. L., Stoll R. W., Ensinck J. W., Williams R. H. Immunological studies of the A and B chains of insulin. Diabetes. 1970 Jun;19(6):409–419. doi: 10.2337/diab.19.6.409. [DOI] [PubMed] [Google Scholar]
  27. Wilkin T., Hoskins P. J., Armitage M., Rodier M., Casey C., Diaz J. L., Pyke D. A., Leslie R. D. Value of insulin autoantibodies as serum markers for insulin-dependent diabetes mellitus. Lancet. 1985 Mar 2;1(8427):480–481. doi: 10.1016/s0140-6736(85)92086-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES