Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Apr;79(4):1217–1225. doi: 10.1172/JCI112940

Accelerated transfer of cholesteryl esters in dyslipidemic plasma. Role of cholesteryl ester transfer protein.

A Tall, E Granot, R Brocia, I Tabas, C Hesler, K Williams, M Denke
PMCID: PMC424316  PMID: 3558822

Abstract

Plasma cholesteryl esters, synthesized in the high density lipoproteins (HDL), may be transferred to other lipoproteins by a cholesteryl ester transfer protein (CETP). We found a twofold increase in mass transfer of cholesteryl ester from HDL to apoB-containing lipoproteins in incubated hypercholesterolemic rabbit plasma compared with control. There was a two- to fourfold increase in the activity of CETP, measured in an isotopic assay in hypercholesterolemic plasma. A CETP-like molecule was isolated in increased amounts from hypercholesterolemic plasma. Incubated plasma from four dysbetalipoproteinemic subjects also showed an increase (threefold) in cholesteryl ester mass transfer, compared with normolipidemic controls. There was a twofold increase in the activity of CETP, assayed in whole or lipoprotein-free plasma. Thus, there is increased transfer of cholesteryl esters from HDL to potentially atherogenic apoB-containing lipoproteins in dyslipidemic rabbit and human plasma. The enhanced transfer results in part from increased activity of CETP, possibly reflecting an increase in CETP mass.

Full text

PDF
1217

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Barter P. J., Hopkins G. J., Gorjatschko L. Comparison of human plasma low- and high-density lipoproteins as substrates for lecithin: cholesterol acyltransferase. Biochim Biophys Acta. 1984 Jan 17;792(1):1–5. doi: 10.1016/0005-2760(84)90274-1. [DOI] [PubMed] [Google Scholar]
  4. Castro G. R., Fielding C. J. Effects of postprandial lipemia on plasma cholesterol metabolism. J Clin Invest. 1985 Mar;75(3):874–882. doi: 10.1172/JCI111786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daugherty A., Lange L. G., Sobel B. E., Schonfeld G. Aortic accumulation and plasma clearance of beta-VLDL and HDL: effects of diet-induced hypercholesterolemia in rabbits. J Lipid Res. 1985 Aug;26(8):955–963. [PubMed] [Google Scholar]
  6. Daugherty A., Schonfeld G., Sobel B. E., Lange L. G. Metabolism of very low density lipoproteins after cessation of cholesterol feeding in rabbits. A factor potentially contributing to the slow regression of atheromatous plaques. J Clin Invest. 1986 Apr;77(4):1108–1115. doi: 10.1172/JCI112409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Erickson S. K., Cooper A. D. Acyl-coenzyme A:cholesterol acyltransferase in human liver. In vitro detection and some characteristics of the enzyme. Metabolism. 1980 Oct;29(10):991–996. doi: 10.1016/0026-0495(80)90045-1. [DOI] [PubMed] [Google Scholar]
  8. Fainaru M., Mahley R. W., Hamilton R. L., Innerarity T. L. Structural and metabolic heterogeneity of beta-very low density lipoproteins from cholesterol-fed dogs and from humans with type III hyperlipoproteinemia. J Lipid Res. 1982 Jul;23(5):702–714. [PubMed] [Google Scholar]
  9. Fielding C. J. The origin and properties of free cholesterol potential gradients in plasma, and their relation to atherogenesis. J Lipid Res. 1984 Dec 15;25(13):1624–1628. [PubMed] [Google Scholar]
  10. Fielding P. E., Fielding C. J., Havel R. J., Kane J. P., Tun P. Cholesterol net transport, esterification, and transfer in human hyperlipidemic plasma. J Clin Invest. 1983 Mar;71(3):449–460. doi: 10.1172/JCI110789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibson J. C., Rubinstein A., Brown W. V. Precipitation of apo E-containing lipoproteins by precipitation reagents for apolipoprotein B. Clin Chem. 1984 Nov;30(11):1784–1788. [PubMed] [Google Scholar]
  12. Glomset J. A. Lecithin: cholesterol acyltransferase. An exercise in comparative biology. Prog Biochem Pharmacol. 1979;15:41–66. [PubMed] [Google Scholar]
  13. Glomset J. A., Norum K. R. The metabolic role of lecithin: cholesterol acyltransferase: perspectives form pathology. Adv Lipid Res. 1973;11:1–65. [PubMed] [Google Scholar]
  14. Groener J. E., Van Rozen A. J., Erkelens D. W. Cholesteryl ester transfer activity. Localization and role in distribution of cholesteryl ester among lipoproteins in man. Atherosclerosis. 1984 Mar;50(3):261–271. doi: 10.1016/0021-9150(84)90074-1. [DOI] [PubMed] [Google Scholar]
  15. Ierides M., Dousset N., Potier M., Manent J., Carton M., Douste-Blazy L. Cholesteryl ester transfer protein. Size of the functional unit determined by radiation inactivation. FEBS Lett. 1985 Nov 25;193(1):59–62. doi: 10.1016/0014-5793(85)80079-x. [DOI] [PubMed] [Google Scholar]
  16. Kane J. P., Chen G. C., Hamilton R. L., Hardman D. A., Malloy M. J., Havel R. J. Remnants of lipoproteins of intestinal and hepatic origin in familial dysbetalipoproteinemia. Arteriosclerosis. 1983 Jan-Feb;3(1):47–56. doi: 10.1161/01.atv.3.1.47. [DOI] [PubMed] [Google Scholar]
  17. Mahley R. W., Innerarity T. L. Lipoprotein receptors and cholesterol homeostasis. Biochim Biophys Acta. 1983 May 24;737(2):197–222. doi: 10.1016/0304-4157(83)90001-1. [DOI] [PubMed] [Google Scholar]
  18. Morton R. E. Binding of plasma-derived lipid transfer protein to lipoprotein substrates. The role of binding in the lipid transfer process. J Biol Chem. 1985 Oct 15;260(23):12593–12599. [PubMed] [Google Scholar]
  19. Morton R. E., Zilversmit D. B. Inter-relationship of lipids transferred by the lipid-transfer protein isolated from human lipoprotein-deficient plasma. J Biol Chem. 1983 Oct 10;258(19):11751–11757. [PubMed] [Google Scholar]
  20. NICHOLS A. V., SMITH L. EFFECT OF VERY LOW-DENSITY LIPOPROTEINS ON LIPID TRANSFER IN INCUBATED SERUM. J Lipid Res. 1965 Apr;6:206–210. [PubMed] [Google Scholar]
  21. Patsch J. R., Karlin J. B., Scott L. W., Smith L. C., Gotto A. M., Jr Inverse relationship between blood levels of high density lipoprotein subfraction 2 and magnitude of postprandial lipemia. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1449–1453. doi: 10.1073/pnas.80.5.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pattnaik N. M., Montes A., Hughes L. B., Zilversmit D. B. Cholesteryl ester exchange protein in human plasma isolation and characterization. Biochim Biophys Acta. 1978 Sep 28;530(3):428–438. doi: 10.1016/0005-2760(78)90163-7. [DOI] [PubMed] [Google Scholar]
  23. Reardon M. F., Poapst M. E., Steiner G. The independent synthesis of intermediate density lipoproteins in type III hyperlipoproteinemia. Metabolism. 1982 May;31(5):421–427. doi: 10.1016/0026-0495(82)90228-1. [DOI] [PubMed] [Google Scholar]
  24. Redgrave T. G., Dunne K. B., Roberts D. C., West C. E. Chylomicron metabolism in rabbits fed diets with or without added cholesterol. Atherosclerosis. 1976 Sep;24(3):501–508. doi: 10.1016/0021-9150(76)90142-8. [DOI] [PubMed] [Google Scholar]
  25. Rose H. G., Juliano J. Regulation of plasma lecithin:cholesterol acyltransferase in man. III. Role of high density lipoprotein cholesteryl esters in the activating effect of a high-fat test meal. J Lipid Res. 1979 Mar;20(3):399–407. [PubMed] [Google Scholar]
  26. Sammett D., Tall A. R. Mechanisms of enhancement of cholesteryl ester transfer protein activity by lipolysis. J Biol Chem. 1985 Jun 10;260(11):6687–6697. [PubMed] [Google Scholar]
  27. Son Y. S., Zilversmit D. B. Increased lipid transfer activities in hyperlipidemic rabbit plasma. Arteriosclerosis. 1986 May-Jun;6(3):345–351. [PubMed] [Google Scholar]
  28. Son Y. S., Zilversmit D. B. Purification and characterization of human plasma proteins that inhibit lipid transfer activities. Biochim Biophys Acta. 1984 Oct 4;795(3):473–480. doi: 10.1016/0005-2760(84)90175-9. [DOI] [PubMed] [Google Scholar]
  29. Steele B. W., Koehler D. F., Azar M. M., Blaszkowski T. P., Kuba K., Dempsey M. E. Enzymatic determinations of cholesterol in high-density-lipoprotein fractions prepared by a precipitation technique. Clin Chem. 1976 Jan;22(1):98–101. [PubMed] [Google Scholar]
  30. Tabas I., Weiland D. A., Tall A. R. Unmodified low density lipoprotein causes cholesteryl ester accumulation in J774 macrophages. Proc Natl Acad Sci U S A. 1985 Jan;82(2):416–420. doi: 10.1073/pnas.82.2.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tall A. R., Abreu E., Shuman J. Separation of a plasma phospholipid transfer protein from cholesterol ester/phospholipid exchange protein. J Biol Chem. 1983 Feb 25;258(4):2174–2180. [PubMed] [Google Scholar]
  32. Tall A. R., Small D. M. Body cholesterol removal: role of plasma high-density lipoproteins. Adv Lipid Res. 1980;17:1–51. [PubMed] [Google Scholar]
  33. Tall A., Sammett D., Granot E. Mechanisms of enhanced cholesteryl ester transfer from high density lipoproteins to apolipoprotein B-containing lipoproteins during alimentary lipemia. J Clin Invest. 1986 Apr;77(4):1163–1172. doi: 10.1172/JCI112417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Warnick G. R., Albers J. J. A comprehensive evaluation of the heparin-manganese precipitation procedure for estimating high density lipoprotein cholesterol. J Lipid Res. 1978 Jan;19(1):65–76. [PubMed] [Google Scholar]
  35. Zilversmit D. B. Atherogenesis: a postprandial phenomenon. Circulation. 1979 Sep;60(3):473–485. doi: 10.1161/01.cir.60.3.473. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES